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ABSTRACT: Results from the analysis of aqueous and solid-phase V speciation within samples collected from the Hazeltine
Creek catchment affected by the August 2014 Mount Polley mine tailings dam failure in British Columbia, Canada, are
presented. Electron microprobe and X-ray absorption near-edge structure (XANES) analysis found that V is present as V3+

substituted into magnetite and V3+ and V4+ substituted into titanite, both of which occur in the spilled Mount Polley tailings.
Secondary Fe oxyhydroxides forming in inflow waters and on creek beds have V K-edge XANES spectra exhibiting E1/2
positions and pre-edge features consistent with the presence of V5+ species, suggesting sorption of this species on these
secondary phases. PHREEQC modeling suggests that the stream waters mostly contain V5+ and the inflow and pore waters
contain a mixture of V3+ and V5+. These data, and stream, inflow, and pore water chemical data, suggest that dissolution of
V(III)-bearing magnetite, V(III)- and V(IV)-bearing titanite, V(V)-bearing Fe(-Al-Si-Mn) oxhydroxides, and V-bearing
Al(OH)3 and/or clay minerals may have occurred. In the circumneutral pH environment of Hazeltine Creek, elevated V
concentrations are likely naturally attenuated by formation of V(V)-bearing secondary Fe oxyhydroxide, Al(OH)3, or clay
mineral colloids, suggesting that the V is not bioavailable. A conceptual model describing the origin and fate of V in Hazeltine
Creek that is applicable to other river systems is presented.

■ INTRODUCTION
Vanadium(V) is a transition metal that is the 22nd most
abundant in the Earth’s crust1,2 and occurs naturally in four
oxidation states [V(II), V(III), V(IV), and V(V)]. Although V
is an essential element for humans and animals at low
concentrations,3 the intake of high concentrations of V can be
carcinogenic and toxic.4,5 Generally, V(V) is considered to be

the most toxic of the V species because it can inhibit or replace
phosphate.6,7 Vanadium is classed by the United Nations, U.S.
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Environmental Protection Agency, and Chinese Ministry of
Environmental Protection as a priority environmental risk
element.2,8−10 In recognition of the potential toxicity of V,
Canada has set a Federal Water Quality Guideline of 120 μg/L
for protection of aquatic life in freshwater,11 and Schiffer and
Liber12 have suggested a more stringent chronic hazardous
concentration endangering only 5% of species (HC5) of 50
μg/L for Canadian freshwater organisms.
Humans can be exposed to vanadium mainly through

inhalation and ingestion, potentially causing long-term
respiratory and digestive problems, respectively.13 Aqueous
vanadate [V(V)] can also be taken up in benthic organisms
such as Hyalella azteca14 and have been shown to cause
genotoxic and cytotoxic effects in higher plants.15 Vanadium
can be distributed in water, soil, sediment, and air through the
weathering of natural materials and through releases from
anthropogenic activities, including the burning of fossil fuels,
application of pesticides and phosphate fertilizers, steel,
aerospace, and other industries, and mining.9,16,17 For example,
mining activities have led to contamination of waters and soils
with V (e.g., 76−208 μg/L in groundwaters and 149−4800
mg/kg in soils of the Panzhihua mining and smelting area in
China18,19). There is, however, a lack of information about,
and understanding of, the geochemical−mineralogical cycling
of V in mining-affected environments,20 but these are required
to determine health effects and to develop management and
remediation schemes.
Mine tailings dam failures can rapidly add large amounts of

V-bearing solid and liquid wastes to the fluvial environment.21

Globally, failures of mine tailings dams have significant impacts
in the short (hours to months) and long term (years to

centuries) on ecosystems and humans that live in affected
catchments, through erosion, deposition of tailings sediment
and fluids, and contamination of soil and water with potentially
toxic metal and metalloid elements, and loss of life.22,23 The
fourth August 2014 failure of the tailings storage facility (TSF)
at Mount Polley, British Columbia, Canada, is the second
largest by volume on record.23 Approximately 25 Mm3 of
material, comprising 7.3 Mm3 of tailings solids, 10.6 Mm3 of
supernatant water, 6.5 Mm3 of interstitial water, and 0.6 Mm3

of tailings dam construction materials were discharged into the
Quesnel River Watershed.23−25 The material flowed north into
and plugged Polley Lake and then was diverted southeast into
Hazeltine Creek for 9.5 km. A significant proportion of the
tailings and interstitial water (18.6 ± 1.4 M m3)25 and eroded
soils and vegetation26 were deposited into the West Basin of
Quesnel Lake (Figure 1). Deposition of tailings (average 1 m
thick, but up to 3.5 m thick in the upper part of the area
nearest the TSF) also occurred within the Hazeltine Creek
catchment up to 100 m from the channel, especially near
Polley Lake and Lower Hazeltine Creek.25 Extensive cleanup
has been undertaken since the spill (and since the sampling for
this study was undertaken), comprising removal of most of the
spilled tailings from, and restoration of, the catchment. This
was aimed at restoring ecosystem habitats through the
establishment of a new rock-lined channel, reducing remobi-
lization of the remaining tailings and exposed natural
sediments and decreasing turbidity,.27,28

Mount Polley is a Cu−Au porphyry deposit, and the tailings
comprise mostly silicate minerals (feldspars, ferro-magnesian
and Ca-Ti-silicates, and muscovite), oxides such as magnetite
and rutile, carbonates, Cu sulfides, and pyrite. Although the

Figure 1. Location of the study area showing the Hazeltine Creek stream (HC-), inflow sample, pore water (PW-) and tailings, sediment, and Fe
oxyhydroxide (POL-) sample sites for materials collected in 2014 and 2015. Labels shown are for those samples discussed in this work; sample
locations for the remaining stream, inflow, and pore water samples are shown in ref 37.
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Mount Polley tailings have low sulfide (0.1−0.3 wt %) and
trace metal and metalloid concentrations29 relative to those of
other tailings,22,30,31 they have elevated concentrations of V
(86−295 mg/kg) compared to local background soils (40.2−
133 mg/kg27). Vanadium was also initially identified, in
addition to Cu, Se, and Mo, as a contaminant of potential
concern in Hazeltine Creek soils.32 The cycling of Cu in
Hazeltine Creek has been previously examined in de-
tail,26,29,33−37 but detailed geochemical and mineralogical
studies of V, Se, and Mo have not been conducted.
In this paper, we focus on V due to its high environmental

risk potential2,8−10 and the relative lack of data on its behavior
in mining-affected environments.20 We aim to understand the
geochemical cycling of V in the Hazeltine Creek catchment
and its implications for the origin, transport, fate, and
potentially toxicity of V in other river systems. The objectives
of the study are to determine (1) V concentrations and
speciation in stream, inflow, and pore waters using aqueous
composition data and PHREEQC modeling, (2) solid-phase V
concentrations and speciation in the deposited tailings and
secondary Fe oxyhydroxides using electron microprobe,
automated mineralogy analysis, and X-ray absorption spec-
troscopy (XAS) analysis, and (3) the environmental origin,
fate, and potential hazard of the deposition of V-bearing
tailings in mining-affected catchments following tailings dam
failures and remediation. We present, for the first time to the
best of our knowledge for natural systems, evidence that
dissolution of V-bearing magnetite and titanite may contribute
to aqueous V. The results will also inform restoration and
management schemes for river systems receiving V from other
natural and anthropogenic sources.

■ MATERIALS AND METHODS
Field Site. The Mount Polley porphyry Cu−Au mine38 is

located in British Columbia, Canada, 275 km southeast of
Prince George (Figure 1). Hazeltine Creek drains an area of
112 km2, including Polley Lake (Figure 1) and flows 9.5 km in
a southeasterly direction before discharging into Quesnel Lake.
Hazeltine Creek has an alkaline pH (average of 8.2 prior to the
spill;39 pH 7.0−9.3 from July 30 to August 2, 201537). The
catchment is underlain by Late Triassic alkali intrusions,
including the porphyry Cu−Au orebody, and by Mesozoic
basaltic and andesitic volcanics, and glaciofluvial and
glaciolacustrine deposits.38

Water Sampling, Analysis, and Speciation−Solubility
Modeling. Details of water sampling analysis and quality
control are presented in ref 37 and are summarized briefly
here. In August 2015, samples were collected from 10 stream
waters from Hazeltine Creek, 12 inflow waters seeping from
riparian tailings into the creek, and three stream channel pore
water sites collected at depths of 10 and 20 cm through
deposited tailings, natural stream sediments, and bank
materials (using a 3/8 in. stainless steel piezometer and
peristaltic pump). The piezometer design used in this study
was developed by the U.S. Geological Survey and has been
used extensively to sample trace metals in pore waters.
Standard practice for operating the piezometer is to flush it
with deionized water before and after pumping to ensure that
the drive point itself is clean and not contaminated.
Furthermore, it is unlikely that metal leaching would occur
over the time scale of pore water pumping and sampling (2−3
min). Thus, we believe that there was no contribution of V or
other metals to the pore water samples. The sampling took

place when spilled tailings were being excavated and removed
from the creek valley, creek turbidity was high, and a new
channel was being constructed. Thus, the results reported here
could be considered to represent conditions that might be
encountered during a spring freshet.34 The concentrations of
total and filtered (<0.45 μm) major (Al, Ca, K, Mg, Na, and
Si) and trace elements (As, Cd, Cu, Cr, Fe, Mo, Mn, Ni, Pb,
Se, V, and Zn) were determined by inductively coupled plasma
optical emission spectroscopy (Thermo Scientific iCAP 6500
Duo) and mass spectroscopy (Thermo X-series 1), respec-
tively. Ion chromatography (Dionex ICS-2500) was used to
determine filtered anion (Cl, F, and SO4) concentrations.
Equilibrium modeling, using the measured aqueous concen-
trations and other aqueous parameters of the Hazeltine Creek
stream, inflow, and pore water samples, was carried out using
the PHREEQC code and the minteq dat.v4 thermodynamic
database distributed with the code.40,41 Alkalinity was
estimated for the stream and inflow waters as bicarbonate by
ion sum calculation (i.e., charge balance was forced with
bicarbonate). We carried out calculations to check if the
modeled V speciation and saturation indices were sensitive to
bicarbonate activity using different HCO3 concentrations and
found no significant differences in our results. Ferrihydrite and
amorphous Al(OH)3 were allowed to precipitate during the
equilibrium modeling, as the waters are not likely to be
oversaturated with respect to these minerals.

Tailings, Sediment, and Fe Oxyhydroxide Sampling
and XRF V Analysis. In August 2016, samples of deposited
tailings and a secondary Fe oxyhydroxide sample deposit
scraped from a seep draining a reprofiled stream bank (Table
S4) were also collected in clean polyethylene bags. These were
air-dried and stored at 4 °C until they were used. A proportion
was crushed and pressed into powder pellets for V analysis by
XRF (Bruker S4 Pioneer). Subsamples of deposited tailings
[ST 09-02-01-140915 and WT 17-08-02-140912 (Table S4)]
collected in 2014 following the dam failure by consultants of
Mount Polley Mining Corp., and described by SNC-Lavalin
Inc.,26 were donated by the mine for comparison to samples
collected by the authors.

Electron Microprobe and Automated Mineralogy
Analysis. Polished blocks of all solid samples were examined
with a Jeol 8100 Superprobe (WDS) with an Oxford
Instrument Inca System (EDS). Spot analyses and X-ray
chemical mapping were carried out by collecting energy data
between 0 and 20 eV using an accelerating voltage of 15 kV, a
current of 2.5 mA, and a spot size of 1 μm. The analyses were
calibrated using a ZAF (atomic number, absorption,
fluorescence) matrix correction with standards of oxides and
Specpure metals. To quantify and further characterize and
quantify the bulk mineralogy and those minerals identified with
the Superprobe as containing V, the polished blocks were
investigated using a Mineral Liberation Analysis automated
mineralogy system on a FEI Quanta 650 FEG ESEM
instrument equipped with twin Bruker XFlash EDS detectors
at Queen’s University. Spectra were collected at 25 kV, with a
minimum of 2000 counts per analysis, recording ≥250000 X-
ray spectra on each sample to calculate total area percentages
of each mineral detected and then a further 800000 spectra at
higher-resolution searching and targeting V-bearing minerals at
fine detail.

X-ray Absorption Spectroscopy (XAS) Analysis.Micro-
focus XANES V K-edge spectra (5465 eV) for individual
magnetite, titanite, and Fe oxyhydroxide grains were collected

Environmental Science & Technology Article

DOI: 10.1021/acs.est.8b06391
Environ. Sci. Technol. 2019, 53, 4088−4098

4090

http://dx.doi.org/10.1021/acs.est.8b06391


on beamline I18 at the Diamond Light Source operating at 3
GeV with a typical current of 300 mA, using a nitrogen-cooled
Si(111) double-crystal monochromator and focusing optics.
Kirkpatrick-Baez mirrors were used to produce a focused beam
with a diameter of 3 μm at the sample. For samples and
standards [V metal, V2O3, VO2, V2O5, and V(V) sorbed to
FeOOH (see the Supporting Information for the preparation
method)], K-edge spectra were collected in fluorescence mode
at room temperature (∼295 K) using a four-element solid state
Si detector. Because we analyzed V-bearing titanite, we
checked that the V Kα emission line could be resolved,
despite its overlap with the Ti Kβ emission line. On beamline
I18, the Ti Kα emission at ∼4510 eV can be resolved in XRF
detectors from the V Kα emission at ∼4950 eV (250−300 eV
separation is required for effective windowing of I18’s XRF
detectors). The lower-intensity Ti K-β emission at 4932 eV
cannot be resolved by any XRF detector, but the binding
energy of the V K edge (5465 eV) is ∼500 eV above the Ti K
edge (4966 eV). Therefore, interference of the Ti K-β XAS
spectra and V K-α XANES spectra was minimal and limited to
long wavelength, low-amplitude EXAFS oscillations, by 4950
eV Ti K-edge oscillations that would be not be apparent in V-
XANES. After the XANES data had been collected, multiple
scans were then averaged to improve the signal-to-noise ratio
using Athena version 0.8.061.42 XANES spectral absorption
data were also normalized in Athena over the full data range
and plotted from approximately −15 to 30 eV relative to the
edge position with no correction required for drift in E0.
Vanadium data were calibrated using E0 measured from thin
metal foils inserted downstream of the samples and measured
simultaneously. The V metal K edge was detected, and the E0
position did not drift between spectra. The V pre-edge peak
energy was determined by calculation of the area-normalized
centroid energy position (i.e., the peak intensity is normalized
to the height of the main V K-edge step on the y-axis of the
resultant graph, plotted against the area-normalized pre-edge
centroid peak energy position on the x-axis) following the
method of Chaurand et al.,43 and used previously for solid-
phase V speciation in bauxite residue.44

■ RESULTS AND DISCUSSION
Aqueous V Geochemistry and Speciation. Filtered V

concentrations (mean of 9 μg/L, range of 7−12 μg/L) in the
Hazeltine Creek stream waters were slightly elevated compared
to pre-event mean concentrations (1 μg/L29), higher than
mean global filtered river concentrations (0.71 μg/L45) but
lower than chronic hazardous concentrations recently identi-
fied for freshwater organisms.12

Overall, filtered V concentrations declined with the distance
downstream of the Polley Lake weir (Figure 2). Filtered V
concentrations in the stream waters were generally lower than
those of the inflows seeping from tailings (mean of 17 μg/L,
range of 4−41 μg/L), but the inflow waters do not appear to
have affected V concentrations downstream, likely because of
their low volumes and flow rates (Figure 2). Unfiltered V
concentrations in stream (mean of 15 μg/L, range of 11−21
μg/L) and inflow waters (mean of 59 μg/L, range of 4−303
μg/L1) were either similar to (within 7 μg/L; 62% of samples)
or higher than (≤278 μg/L; 38% of samples) their respective
filtered concentrations.37 Unfiltered V concentrations were
highest in the inflow waters in the upper part of the catchment
within approximately 2000 m of the Polley Lake weir (Figure
2).

Filtered V concentrations in the Hazeltine Creek stream
waters at 0 cm in the sampled profiles (8−11 μg/L) were
similar to those of the other stream waters collected. At a depth
of 10 cm, all filtered pore water V concentrations peaked [132,
1200, and 53 μg/L for PW-1, PW-2, and PW-3, respectively
(Figure 3)], but concentrations declined at a depth of 20 cm
(83, 231, and 43 μg/L for PW-1, PW-2, and PW-3,
respectively). Peaks in filtered V concentrations at a depth of
10 cm coincide with peaks in filtered Al, As, Ca, Cu, Fe, K, Mg,
Mn, Ni, Zn, and Si concentrations and declines in ORP and
pH (Figure 3). The fact that PW-2 has V concentrations higher
than those in PW-1 and PW-3 might be due to its position at
the downstream end of upper Hazeltine Creek (Figure 1),
where the greatest amount of spilled tailings was deposited
following the tailings dam failure and remained at the time of
sampling in August 2015.37

Filtered V concentrations for most of the pore waters are
positively correlated with filtered concentrations of Fe, Al, Cr,
Ni, and Si and slightly positively but more flatly correlated with
filtered Ca concentrations (Figure 4). By contrast, filtered
concentrations of inflow waters are poorly correlated with Fe,
Al, and Ni concentrations but well correlated with Si, Ca, and
Cr, together with some of the pore water samples.
The PHREEQC modeling suggested that no minerals with

V as a major component were oversaturated in any of the
Hazeltine Creek waters (Table S1). Calcite, diaspore, and
gibbsite were predicted to be slightly oversaturated in many of
the samples (Table S1). Pentavalent V was predicted to form
100% of all of the aqueous V species in all but one (HC9) of
the stream waters. By contrast, the inflow and pore waters are
modeled to contain varying amounts of V(III) and V(V)
(Table S2). V(III) is modeled to dominate in some of the
inflow waters and in the pore waters at a depth of 20 cm, and
V(V) is predicted to dominate in the majority of the inflow
waters and in the pore waters at depths of 0 and 10 m (Table
S2). The modeling suggests that HVO4

2− was the dominant
species (50−86%) in all but one (HC9) of the stream waters,
with smaller amounts of H2VO4

− [14−50% (Table S3)]. The

Figure 2. Spatial profile of the Hazeltine Creek stream and inflow
filtered (V-F) and unfiltered (V-T) V concentrations. Samples were
collected in August 2015. The pretailings dam spill median V
concentration of 1 μg/L29 is shown for reference.
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inflow and pore waters have relatively low calculated
proportions of HVO4

2− (inflow, 23−63%; pore, 2146%) and
relatively high proportions of H2VO4

− [inflow, 37−77%; pore,
54−77% (Table S3)]. The highest V concentrations recorded
in this study occur in inflow and pore waters at pH <8.1−8.3,
which is the equilibrium point between the weak acid and
conjugate base (pKa) (pH 8.1−8.3) between HVO4

2− and
H2VO4

− at 25 °C.9,46

We did not measure DOC concentrations and thus were not
able to develop a V−organic complexation model. However,
we acknowledge that V is known to bind with DOC in the
form of humic acids and EDTA in aquatic environments47−49

and, therefore, that DOC may have played a role in V cycling
in the Hazeltine Creek catchment.
Solid-Phase V Geochemistry and Mineralogy. Con-

centrations of V in the study samples ranged from 51 to 231
mg/kg (Table S4), which are mostly within the range for
Mount Polley tailings collected in 2014.26 The V concen-
trations are lower than concentrations reported for some mine
wastes (e.g., 860−963 mg/kg for red mud from the 2010 Ajka,
Hungary, alumina processing repository failure44) but are
within the same range as others (e.g., 135 mg/kg for
abandoned Au mine tailings in Nova Scotia, Canada;50 40.7
mg/kg for polysulfide tailings in Boliden, Sweden51). The
spilled tailings [samples POL-5−7 and POL-9 (Table S5)] are
dominated by orthoclase and albite (both 32−41 area %), with
smaller amounts of hornblende/augite (3.9−5.1 area %),
epidote (3.5−4.9 area %), muscovite (3.2−3.8 area %),
plagioclase (1.6−2.5 area %), quartz (1.3−2.4 area %), and
chlorite (1.3−1.5 area %), similar to proportions found by
Kennedy et al.52 The magnetite abundance is ascribed to Fe
oxides in the automated mineralogy analysis, forming 1.2−3.1
area % of the total mineralogy, while titanite forms 0.5−1.7
area %. A Cu-bearing Fe oxide phase containing >0.1 wt % Cu
was added to the automated mineralogy library,34 and this
phase forms 0.5−2.3 area % of the tailings. The remaining

samples [POL-12−14 (Table S5)] contain higher proportions
of quartz (20−50 area %), suggesting dilution by catchment
soils.
Magnetite and titanite in the Mount Polley tailings both

contain V (Figure 5), but no other tailings minerals were found
to contain V at the detection limit of the microprobe (0.001 wt
%). Average V concentrations for 11 magnetite grains are 0.28
wt % (range of 0.16−0.37 wt %) and for 14 titanite grains are
0.25 wt % (0.14−0.35 wt %). The latter are within the same
order of magnitude as those determined by Celis53 for 57
titanite grains from the Mount Polley deposit (mean of 0.15 wt
% V, range of 0.06−0.29 wt % V). The magnetite also contains
trace amounts of Si (mean of 0.045 wt %), and magnetite and
titanite contain trace concentrations of Al (0.045 and 0.037 wt
%, respectively), Cr (0.042 and 0.001 wt %, respectively), and
Mn (0.13 and 0.042 wt %, respectively). Vanadium
concentrations in the Fe oxyhydroxide collected from a seep
draining a reprofiled stream bank are low, at or below the limit
of detection of the microprobe (≤0.001 wt % V; 10 grains).

Vanadium XANES Analysis. Charaund et al.43 proposed
an elegant system for interpreting V K-edge XANES spectra
based on the detail observation of pre-edge peak intensity and
energy position. In this system, data are described in terms of
variation in both coordination symmetry and valence state.
Data are provided from multiple V(V) standards as V K-edge
XANES is sensitive to changes in both valence and the mode
of structural incorporation [e.g., V(V) on FeOOH is
tetrahedral, and V(V) in V2O5 is square pyramidal54−56].
The multiple V(V) standards are therefore desirable to
investigate the mode of V occurrence in samples. When the
Mount Polly magnetite and titanite data are plotted in this
scheme, the sample data are plotted between the octahedral
V3+ and V4+ standards. The magnetite samples appear to
contain primarily V3+, suggesting incorporation of V3+ via
substitution for octahedral Fe3+ within the structure. This is
consistent with other studies of magnetite,57−59 although Balan

Figure 3. Geochemical profiles for pore water profiles PW-1, PW-2, and PW-3.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.8b06391
Environ. Sci. Technol. 2019, 53, 4088−4098

4092

http://dx.doi.org/10.1021/acs.est.8b06391


et al.58 also found minor (<10%) V(IV) occupying octahedral
sites. The Mount Polley titanite V is plotted between
octahedrally coordinated V3+ and V4+ (Figure 6), suggesting
that it most likely substituting for octahedrally coordinated
Fe3+, Al3+, or Ti4+ in the mineral structure. Celis53 found that
Mount Polley titanite contained almost equal concentrations of
Al and Fe, substantiating the possibility of V3+ substitution for
Fe3+ and Al3+. Pan and Fleet60 also reported that octahedrally
coordinated V3+ and V4+ had radii (0.64 and 0.58 Å,
respectively) similar to that of octahedrally coordinated Al3+

(0.535 Å61) and could therefore substitute for the latter within
the vanadian titanite of the Hemlo gold deposit.
The V-bearing iron oxyhydroxide sample is plotted between

V4+ (Oh) and the V5+ absorbed to FeOOH standards. It is
possible that V in these samples is present as a mixture
between the primary V4+ and V5+ in absorption complexes on
hydrous iron oxyhydroxides. However, adsorbed V4+ does not
persist in oxygenated environments as it is readily oxidized to

V5+,62 and most of the scientific literature reports the strong
affinity of Fe oxyhydroxides such as goethite and ferrihydrite
for V5+.5463−65 Kaur et al.65 attempted to make samples of
V(III)-containing goethite but found that some oxidation
occurred and that V(III), V(IV), and V(V) were also present.
The resultant XANES spectra are intermediate between those
of V(III) and V(V), similar to our spectra (Figure 6). Kaur et
al.65 also provided data that suggested that oxidized V was not
readily incorporated in the goethite and therefore are likely
resent as adsorbed V(V) that was more easily removed by
protons than more reduced forms.

Vanadium Cycling in Hazeltine Creek following the
Mount Polley Tailings Dam Failure and Remediation.
V(III)-bearing magnetite and V(III)- and/or V(IV)-bearing
titanite (Figures 5 and 6) were deposited within remobilized
tailings and together with a large number of uprooted trees in
the Hazeltine Creek catchment following the 2014 Mount
Polley dam failure. It is also possible that smaller amounts of

Figure 4. X−Y plots showing the relationship between filtered V and other filtered element concentrations in stream, inflow, and pore waters.
Stream water sample concentrations are mostly <10 μg/L and so are masked by the inflow and pore waters. Trends shown for the inflow waters
(red squares) and for most of the pore water data (green circles).
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these minerals occurred within Hazeltine Creek channel and
floodplain sediments and soils prior to the failure, given the
relatively high V concentrations of some background soils.26 A
year after the tailings dam failure, high filtered concentrations
of V in pore waters occurring at depths of 20 cm and especially
10 cm in Hazeltine Creek coincide with peak concentrations of
Al, As, Ca, Cu, Fe, K, Mg, Mn, Ni, Zn, and Si and declines in
ORP and pH (Figure 3). It is possible that these high
concentrations reflect those in initial tailings dam pore waters
transported with the spilled tailings, but this is unlikely for the

following reasons. First, most of the tailings and interstitial
water went into Quesnel Lake rather than Hazeltine Creek.25

Second, we sampled in a very disturbed mixed river sediment
rather than undisturbed layers of tailings. Third, we sampled a
year after the spill, and the nature of the channel (high
gradient, gravelly substrate) encouraged flushing by hyporheic
exchange. Therefore, we propose that the high filtered V
concentrations at depths of 10 and 20 cm arose from
dissolution of V-bearing phases containing these elements
just below the water−sediment interface.66 Positive trends

Figure 5. Electron microprobe X-ray maps showing V-bearing titanite and magnetite in Mount Polley tailings (POL-5) and V-bearing Fe oxide in
the Fe oxyhydroxide (Fe oxyhyd) (POL-13).

Figure 6. (a) K-Edge XANES spectra collected from Mount Polly mineral samples and selected V-containing standards. (b) Plot of pre-edge
intensity vs pre-edge peak energy derived from V K-edge XANES spectra. V standard data from Hobson et al.,72 Burke et al.,21,44 Charaund et al.,43

Bronkema and Bell,73 and Wong et al.74 (Td), (Py), and (Oh) refer to tetrahedral, square pyramidal, and octahedral coordination, respectively.
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between concentrations of V and those of Al, Fe, Cr, Mn, and
Si (Figure 4) suggest that one of the phases undergoing such
dissolution could be the Mount Polley magnetite that
incorporates these elements. The dissolution of vanadium
titano-magnetite with similar concentrations of V (0.28 wt %)
has been demonstrated experimentally by Hu et al.,10 who
showed that V is released from magnetite between pH 5.9 and
8.8 under dissolved O2 concentrations ranging from 5% to
80%. Other possibilities for phases undergoing dissolution to
produce these positive trends could be V-bearing clay minerals,
Al(OH)3, or Fe-Al-Mn-Si oxyhydroxides whose V concen-
trations were below detection limits of our microprobe analysis
and were small enough to pass through the 0.45 μm filter.
Vanadium concentrations in inflow waters are mostly lower

than those in pore waters; those of ≤50 μg/L correlate well
with Ca, Si, Fe, and Al, while those of ≤25 μg/L correlate with
Cr and Mn (Figure 4). The released Ca and Si can be
attributed to the weathering of epidote or feldspar that are
present in the tailings, and that of Ca, Si, Fe, and Al to the
weathering of hornblende (Table S5), but none of these
minerals were found to contain V. Ca and Si are two of the
major components of titanite, and Mount Polley titanites
contain trace amounts of V, Fe, Al, Cr, and Mn. It is proposed
that titanite weathering in the tailings piles from which the
inflows emanate is responsible for these trends and modest
enrichments in V. Although they did not analyze for V, Tilley
and Eggleton67 have shown that titanite can weather, likely
under supergene conditions, to beidellite and anatase at neutral
pH, resulting in the loss of all of the Ca but retention of Ti.
The reason for the different V trends shown by the inflows and
pore waters (Figure 4) is unknown but may be related to
different proportions of these minerals in the spilled tailings.
Positive saturation indices for ferrihydrite and goethite

(Table S1), the presence of Fe oxyhydroxides forming along
the inflow waters, and the sampled V-bearing Fe oxyhydroxide
[POL-13 (Table S5, Figure S3, and Figure 5)] show that some
of the mobilized V is taken up by secondary Fe precipitates.
Iron oxyhydroxides were observed in 2015 at the sediment−
water interface in Hazeltine Creek, especially in the riparian
area downstream of the second gorge where the gradient
shallowed and the valley widened [near HC-9 (Figure 1)].
These data and the declines in Fe concentrations in the
Hazeltine Creek stream waters at 0 cm in the depth profiles
collected (Figure 3) suggest that the high-Fe pore waters at a
depth of 10 cm were attenuated by diffusion of aqueous V and
Fe and/or by precipitation of Fe oxyhydroxides at this
interface. The V in these Fe phases is most likely to be
V(V), given the dominance of this species in the stream waters,
in most of the inflow waters, and in the pore waters at depths
of 0 and 10 cm in the PHREEQC (Table S2) and in the
XANES modeling (Figure 6). The fact that filtered V
concentrations for samples at pH 7.5−8.3 are higher than
those at pH >8.3 (Figure S1) is consistent with experimental
studies. Dzombak and Morel68 and Naeem et al.8 demon-
strated that the level of sorption of V to Fe oxides and
hydroxides was highest between pH ∼3.0 and 3.5 and then
decreased as pH increased from 4 to 11.6. Naeem et al.8

attributed this decrease to competition between OH- and
aqueous V anions for Fe oxide/hydroxide surface binding sites.
Similarly, positive saturation indices for the Al oxyhydroxide
diaspore and Al hydroxide gibbsite and positive trends among
total Al, Si, and V concentrations (Figure S2) also suggest that
the formation of secondary phases such as (Al-Si-bearing) Fe

oxyhydroxides, Al oxyhydroxides and hydroxides, or clay
minerals (see above) may attenuate aqueous V concentrations
that show a decline downstream in Hazeltine Creek (Figure 2).
The association of V with Fe oxyhydroxides has been

observed for streams throughout Sweden affected by natural
and anthropogenic inputs of V,69 with other studies showing
that considerable V transport occurs in the colloidal phase.70

Concentrations of total V in Hazeltine Creek are higher than
those of filtered V (Figure 2), and apart from the data from
three inflow water samples, total Fe, Al, and Si concentrations
correlate well with total V concentrations (Figure S2),
suggesting that fine particulate transport of V is significant in
the catchment.
The significance of the Mount Polley tailings spill with

respect to water quality and V transport is illustrated in Figure
S4, where V flux (kilograms per year) and yield (kilograms per
square kilometer per year) are compared to those of unaffected
regional watersheds in British Columbia and other mining-
affected watercourses around the world. The level of transport
of V in the stream is elevated compared to those of nearby
regional streams, even when the flux data are weighted by
watershed area. In addition, under high-flow conditions, the V
yield (measured at HC-9 in 2016) was comparable to (low-
flow) yield values recorded in Torna Creek, Hungary,
following the 2010 Ajka bauxite residue tailings spill.71 The
V transport data reported here show a departure from
background concentrations and fluxes larger than the departure
of those reported for Cu at Mount Polley.37 Particulate
transport of V appeared to be more dominant under high flow
than low flow, suggesting physical mobilization of residual
tailings could be an important transport mechanism for V
during spring freshets and summer rainfall-runoff events.
However, the bulk of the tailings remaining after our sampling
in 2015 and 2016 was removed from the Hazeltine Creek
watershed and returned to the tailings storage facility (L.
Anglin, personal communication, 2018), suggesting that the
effects of such physical mobilization could be minimal in the
future.
The weathering of mine tailings derived from dam failures

such as Mount Polley can play a major role in V cycling in
surficial environments. We have presented evidence that
deposition of V-bearing tailings can lead to enhanced pore
and inflow water V concentrations, especially when deposited
or stored in environments where dissolution of primary (e.g.,
V-bearing magnetite and titanite) and secondary (V-bearing Fe
and Al oxyhydroxides or clay) minerals also leads to greater V
mobilization. However, these enhanced V concentrations can
be naturally attenuated, and their potential ecotoxicity reduced,
by formation of secondary colloidal Fe oxyhydroxides that
reduce aqueous V to near background levels.
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