Cariboo Chilcotin Climate Change Adaptation Strategy

EXECUTIVE SUMMARY

Natural Resources Ressources naturelles Canada Canada

About the strategy

This strategy is the culmination of a 2 year long case study that is part of the British Columbia Regional Adaptation Collaborative (RAC). It focuses on adaptation to a changing climate, rather than mitigation of greenhouse gas emissions and other potential causes of climate change. It focuses on local government services, not the management of natural resources or the environment.

The Cariboo Regional District (CRD) is initiating a Regional Development Strategy (RDS) in the near future that will outline a plan for development looking forward over the next 20 years.

The RAC case study in the Cariboo-Chilcotin sought to create a climate change adaptation strategy to help to create a RDS that helps the region plan for the medium-term by incorporating the projected climate scenarios in the next 30-70 years. As part of the strategy, key "lessons learned" will be shared that other regional districts can apply as they begin considering climate change adaptation into their own plans and strategies.

The steps followed in the development of the strategy were as follows:

- Learn what is each community doing around adaptation, how do they want to be involved, what services do
 they provide, what are the projected climate change scenarios for the region
- Share through multi-jurisdictional workshops, share local knowledge about sub-regional variations to climate change, which services are vulnerable to a changing climate, how can a RDS help local governments adapt to a changing climate
- Plan summarize what was heard and develop the strategy to feed into the RDS and current plans and
 operations

Past and future climate

Temperature has warmed by about 1.5C over the past 50 years, and is projected to warm by an additional 1.8C by the 2050s. Winter temperatures have increased at a faster rate than summer temperatures, and will continue to do so.

Precipitation as snow has decreased by 24% over the past 50 years, and is projected to decrease by an additional 9% in winter and 55% in spring by the 2050s. Annual precipitation has remained relatively constant but variable across the region.

Anticipated sub-regional variations of future climate scenarios based on past observations:

- Eastern areas (i.e., Cariboo Mountains areas from Wells south to Canim Lake area) anticipate less change from current conditions in temperature and precipitation
- Western areas (i.e., Nazko area of North Cariboo, eastern Chilcotin areas of Riske Creek to Tatla Lake, and Meadow Lake, Canoe Creek and Big Bar areas of South Cariboo) anticipate more change from current conditions in temperature and precipitation, and continued drying of surface water which could impact groundwater.
- South Cariboo anticipates participants anticipate less change from current conditions in temperature in the upper elevations of their sub-region (i.e., Sheridan and Bridge Lakes), and more change from current conditions in the lower elevation areas (i.e., 108 Mile Lake, Lac la Hache areas).

Impacts/vulnerabilities of a changing climate to local government services

The following services were deemed most relevant to climate change adaptation. See the strategy for recommendations to address each of the vulnerabilities.

Current service	Impact or vulnerability due to a changing climate
Planning	 Increased importance of planning to identify areas appropriate for development
	 Increased reliance to coordinate local government services
Airport	 Decrease in number of commercial flights being able to land
	 Decreased life span of runway infrastructure from increased freeze-thaw cycles
	Increased use of salt and de-icers
Snow clearing	Increased annual variability in snowfall will create budgeting difficulties
	 Warmer winters with less snow, and increased frequency of rain/freezing rain/mixed
	precipitation events will require more salt and de-icers
Roads/streets	 Decreased life span of roads and sidewalks from increased freeze-thaw cycles, and increased
	amount of salt and de-icers used.
	Increased need for dust control during drought or winter inversions
Invasive Plant	Increased demands for invasive plant management services due to increased spread of invasive
Management	species
Economic	 Increased need for economic development to capitalize in the positive aspects of a changing
Development	climate (e.g., agricultural opportunities due to longer growing seasons, agricultural composting
	business opportunities, recreation-related opportunities with shorter winters/longer summers,
	bioenergy, etc.)
Water	 Decreased water supply in late summer as a result of earlier spring freshet
	 Cumulative effects of upstream activities and changes in hydrology will be exacerbated, and
	continue to affect downstream municipal water supply
	 Local interaction between surface water and groundwater systems
	Increase in treatment costs to supply water when quality has decreased
Sewer	 Shallow sewer systems or those in proximity to natural features may cause concern
Storm water	Increase in spring freshet volume will strain capacity of storm water systems causing local
	flooding, and potentially damage the infrastructure
	 Decreased life span of storm water systems from increased amount of salt and de-icers used on
	roads
Protective/emergenc	 Increased demand on emergency management services and related social services as a result of
y services (fire	increased frequency and intensity of forest fires, spring floods, landslides in unstable areas and
protection, search	avalanches
and rescue, 911	 Increased training demands to increase emergency response capacity in local government or
telephone)	volunteers
Police	 Increased demand for police in rural areas during forest fires, spring floods and emergency
	events to enforce evacuations and provide communication and safety to residents
Parks	 Increased management needed due to pressures from invasive plants, flooding, longer recreation
	season, and impacts on park infrastructure
Solid waste	 Increased demand for management of woody debris as a result of interface fire treatments, and
management	invasive plant management
Communications	Increased demand on communication services as a result of increased frequency and intensity of
	forest fires, spring floods
Health Services	Increased frequency and intensity of respiratory issues due to poor air quality during forest fires
	or prolonged drought/dusty conditions in summer or during winter inversions
	Increased summer temperature will lead to increased incidence of heat stroke

Opportunities to address a changing climate in the RDS

The following matters to be included in the RDS were deemed most relevant to climate change adaptation. See the strategy for recommendations to address each of the opportunities.

Matter for RDS to consider	Opportunity to address a changing climate
1. avoiding urban sprawl	 Limit urban growth to areas where existing services are already in place
2. settlement patterns	 Densification of downtown areas to reduce reliance on automobiles,
	establishment of bike trails for commuting
3. the efficient movement of goods and	 Minimize road and other infrastructure development and maintenance costs
people	by utilizing existing transportation corridors
4. protecting environmentally sensitive	 Restoration and/or protection of degraded ecosystems, in particular those
areas	that impact water
5. maintaining a secure and productive	 Agricultural and forest specific issues
resource base	 Policies and bylaws, direct involvement through management of community
	forests and other tenures
6. economic development	 Support existing economic sectors such as forestry, ranching, mining and
	tourism in the future climate scenarios
	 Identify new and emerging economic sectors that are appropriate with the
	future climate scenarios
	 Agricultural diversification and processing opportunities
	 Cultural heritage, trail development
7. reducing and preventing air, land and	 Airshed management planning, scrubbers on emissions
water pollution ;	 Small scale settlement and development planning
9. suitable land and resources for	Ensuring future settlement areas are located where the land is suitable (i.e.,
future settlement	not ALR) and sufficient water resources exist
	 Address limits to development given natural resources
10. protecting ground water and	 Point-sources of contamination
surface water	Storm water management systems
	Improvement districts and private water systems
	 Mapping of aquifers and assessment of groundwater – surface water
	interactions
11. minimizing the risks associated with	Assessments of new settlement areas for natural hazard risks (i.e., landslides,
natural hazards;	erosion, flooding, interface fire)
13. planning for energy supply	 Develop shared heating/cooling that recaptures lost energy or is based on
	renewable sources
	 Bioenergy and geothermal potential
14. land, sites and structures with	 Protect land, sites and structures from natural hazards
cultural heritage value	Learn how early pioneers adapted to the climate in the past
	 Economic development potential
15. tax base and revenue sources	Stable tax bases and revenue sources are required to replace the anticipated
	downturn in the forest industry
	This strategy could provide the basis for a funding request from federal or
	provincial government
16. intergovernmental efficiency of	 Significantly reduced local government revenue sources as a result of a
service delivery	decreased tax base could lead to forced sharing of services, or a reduction in
-	the kinds of services provided
17. addressing natural hazards	 Long term plans to move existing settlements away from known natural
affecting existing settlements	hazard areas based on level of risk (i.e., Green Acres trailer park in Williams
	Lake, West Quesnel land instability, Cottonwood River erosion)
	 Restoration, remediation or mitigation of natural hazards

For more information

Mike Simpson, email msimpson@fraserbasin.bc.catel 250-392-1400Web www.fraserbasin.bc.cawww.retooling.cawww.toolkit.ca