Strategic Energy Management Plan

November 25, 2016

Energy Manager:

David Claus, P.Eng, D.Phil

Partnering with:

Senior Management Support:

Solemice

Table of Contents

1.	INTRODUCTION	
1.1 1.2	ENERGY MANAGEMENT AT UNBCENERGY COMMITMENTS AND TARGETS	1
2.	ENERGY MANAGEMENT AT UNBC	2
2.1 2.2	TOTAL ENERGY CONSUMPTION AND COSTENERGY MANAGEMENT BUDGET	2
3.	ENERGY INITIATIVES (3-YEAR PLAN)	4
3.1	FY2016	
3.2	FY20173.2.1 Continuous Optimization Program3.2.2 Exterior Lighting Retrofits3.2.3 Workplace Conservation Awareness and Energy Wise	666
3.3	FY2018	7
3.4	FY2019	
4.	ENERGY SAVINGS	9
4.1 4.2 4.3 4.4	KEY PERFORMANCE INDICATORS	12 13
5.	GREENHOUSE GAS REDUCTIONS	16
APPENDIX	A - COMPLETED PROJECT LIST	
APPENDIX	B - POTENTIAL PROJECTS	19
APPENDIX	C - COMPLETED STUDIES BY BUILDING	20
APPENDIX	D - ENERGY TEAM AND STAKEHOLDERS	21
APPENDIX	E – UNBC GREEN TEAM MEMBERS	22
APPENDIX	F - ENERGY MANAGEMENT ASSESSMENT (EMA) RECOMMENDED ACTIONS	23

1. INTRODUCTION

As Canada's Green UniversityTM, the University of Northern British Columbia is committed to "green" and sustainable activities in every aspect of our operations. Using energy efficiently and employing clean, renewable energy is considered by many to be a critical part of being "green". With raised awareness of the environmental impacts of energy use, UNBC is committed to minimizing our environmental impact by reducing energy consumption through energy efficiency projects, student engagement, and awareness campaigns; and showcasing renewable and efficient energy systems that are of particular interest to northern and remote communities.

With the increasing electricity rates in British Columbia, the importance of the Energy Management Program at UNBC is highlighted. Without electricity reduction efforts, UNBC would see an 18% increase in electricity costs in the five years leading up to 2020. Continuing with the planned energy conservation projects, the impact of the rate increase will be minimized over the next 5 years.

1.1 Energy Management at UNBC

UNBC recently completed its 6th year of the BC Hydro Energy Manager program. The Energy Manager program provides funding to public sector organizations to hire or designate an Energy Manager. Funding covers 50% of the cost of the Energy Manager salary and benefits up to \$50,000, and is contingent upon meeting a number of requirements including meeting a specified energy savings target, submitting a Strategic Energy Management Plan, and completing quarterly presentations to UNBC and BC Hydro.

The UNBC energy portfolio covers all UNBC owned and operated facilities including the Prince George Campus, Terrace Campus, Quesnel River Research Centre, and BMO Centre in downtown Prince George, a total of 22 buildings. Over the past 6 years, the Energy Manager Program has been valued at roughly \$2,100,000, bringing in \$525,000 in incentives and \$487,000 in salary reimbursements, and saving \$1,088,000 in electricity costs through project and program implementation.

1.2 Energy Commitments and Targets

UNBC has developed a new Energy Policy, currently in the approval process, to replace the previous policy in place since 2011. New energy targets have also been established, which set the following goals:

- 1. Reduce electrical and thermal energy consumption (combined) by 25% by 2020
- 2. Reduce fossil fuel consumption for heating by 85% by 2020

Target assessment is based on a comparison with the 2009/2010 baseline, and comparisons are corrected for variations in building floor space and weather. The baselines are corrected for building space and variations in weather.

Target achievement not only involves implementing energy efficiency projects, but requires the participation, engagement, and support of students, faculty, staff, and senior administration. To help reach the above target, UNBC will claim 680,000 kWh worth of energy efficiency projects in FY2017 as part of the Energy Manager Program, and has committed to completing employee engagement programs offered by BC Hydro.

2. ENERGY MANAGEMENT AT UNBC

The energy management portfolio includes all facilities where UNBC has direct operational control. This permits changes to the operating procedures, equipment upgrades, and other capital expenditures. In total, the energy management scope covers 22 buildings over four sites: the Prince George Campus, Terrace Campus, BMO Centre in downtown Prince George, and the Quesnel River Research Centre (QRRC). Of the 22 buildings, 16 are located at the Prince George Campus and account for 98% of the total energy consumption and house roughly 95% of the population.

2.1 Total Energy Consumption and Cost

Propane **Total**

UNBC uses a mix of different energy sources, primarily electricity, bioenergy, and natural gas. Table 1 lists the actual consumption and cost for each utility based on invoiced amounts.

	Annı Consum		Annual Cost
Electricity	15,531,389	kWh	\$1,243,597
Bioenergy (Hog Fuel)	3,793	bdt	\$252,787
Natural Gas	20,192	GJ	\$185,743
Bioenergy (Pellets)	0 1	bdt	\$0

Table 1 - FY2016 Utility Breakdown

Diesel and propane represent less than 1% of the total UNBC energy consumption and cost. Diesel is used for the emergency electrical generators, and as a back-up fuel for the natural gas boilers in the Power Plant. Propane is used to heat the Maintenance Shop on the Prince George campus. Fuel for vehicles and mobile equipment is not included within the scope of the energy management program.

5.938 L

\$4,666

\$1,686,794

Electricity accounts for 42% of our total energy consumption, but 74% of our total energy cost, due to the relatively high marginal rate of electricity. Since the marginal rate of electricity is two to five times greater than natural gas (depending on the natural account), and eight times greater than bioenergy, UNBC has focused primarily on electricity-reduction projects.

A detailed breakdown of energy consumption and costs for each building is included in Section 4.1.

2.2 Energy Management Budget

The FY2016 budget for the Energy Management program is \$502,100 which includes \$108,100 for the Energy Manager salary and expenses, and \$393,400 for energy projects. The utilities are paid from the General Operating Fund.

Up to \$50,000 of the Energy Manager salary and expenses is funded through BC Hydro for completing standard and bonus deliverables outlined in the Energy Manager contract. The remaining \$61,700 is funded by the General Operating Fund.

Project funding is provided from a number of different sources as outlined in Table 2. The funding can be further broken down into internal funding and external funding. Internal funding from the Northern Sport Centre, UNBC's Energy Conservation Revolving Loan Fund and the UNBC 25th Anniversary Fund accounts for \$186,800. The remaining \$169,800 is from outside sources including BC Hydro, the Ministry of Advanced Education Carbon Neutral Capital Project (AVED CNCP) Fund, and the Pacific Institute for Climate Solutions.

Table 2 - FY2016 Project Funding Breakdown

Funding Source	Funding Amount
Northern Sport Centre	\$58,900
UNBC's Energy Conservation Revolving Loa	an Fund \$103,562
UNBC 25 th Anniversary Fund	\$24,300
BC Hydro Incentive Rebates	\$113,705
Carbon Neutral Capital Project Funding	\$51,068
Pacific Institute for Climate Solutions	\$5,000
Total	\$356,535

2.2.1 UNBC's Energy Conservation Revolving Loan Fund

The Energy Conservation Revolving Loan Fund (Loan Fund) was created in 2012 when \$250,000 was made available to fund energy efficiency upgrade projects. After a project is implemented, a portion of the energy cost savings are used to repay the loan, and then used to provide a sustainable source of funding for the energy management program including future upgrade projects and eventually the Energy Manager salary.

Most energy projects are financed through the UNBC Energy Conservation Revolving Loan Fund, with incentives, and outside funding being added to the fund as they are received.

By the end of FY2016, the Loan Fund facilitated \$870,000 of spending towards energy efficiency projects. Income to the fund includes \$320,000 of loan repayments from utility budgets, \$378,000 in incentives from BC Hydro, and special project funding of \$210,000 from the Northern Sport Centre and Northern Medical Program.

3. ENERGY INITIATIVES (3-YEAR PLAN)

Energy reduction targets are outlined both in the UNBC Energy Policy and the BC Hydro Power Smart Energy Manager contract deliverables. The UNBC Energy Policy and Targets provide long-term overall energy reduction goals, while the BC Hydro Energy Manager contract deliverables, outlined in section 3.1, provide annually updated electricity reduction goals.

The previous UNBC Energy Policy aimed for a reduction of energy consumption by 10% over a 5-year period from 2010 to 2015. The revised Energy Policy is in the process of being approved, with updated target recommendations of:

- 1. Reducing overall energy use by 25% by 2020
- 2. Reducing fossil fuel consumption by 85% by 2020

As part of the Energy Manager requirements, UNBC participated in an Energy Management Assessment (EMA) on September 29, 2015. The EMA action items are outlined in Appendix F, and have been used to guide the development of the updated Energy Policy.

3.1 FY2016

The FY2016 Energy Manager contract with BC Hydro Power Smart required project implementations totalling 1,200,000 kWh of annual electricity savings by March 2016. In FY2016 we completed projects with total electricity savings of 1,300,000 kWh as summarized in Table 3.

Table 3 - FY2016 Energy Projects Summary

	BC Hydro Project	Electricity Savings	Heat or Gas Savings	Utility Cost Savings	Project Cost	BC Hydro Incentive	Simple Pay Back
Committed Projects	Number	(kWh/y)	(GJ/y)	(\$/y)	(\$)	(\$)	(y)
C.Op Phase 2 - NSC Implementation C.Op Phase 2 - Admin	COP10-414	452,800	1,900	\$51,600			
Implementation	COP10-415	143,600	900	\$15,700	\$47,821	0	0.6
C.Op Phase 2 - Medical Implementation	COP10-421	97,600	800	\$11,600			
Workplace Conservation Awareness	BCH-02090	354,400	1,200	\$33,900	\$1,762	\$1,762	0
C.Op Phase 3 Investigation	COP10-417	0	0	0	\$46,083	\$45,335	0
	COP10-418						
	COP10-422						
Street Lighting	BCH-02693	167,000	0	13,400	\$164,187	\$45,160	8.9
NSC Lighting	BCH-02694	86,000		6,900	\$60,027	\$20,700	5.7
Conference Centre Air Handler	-	0	800	3,500	\$6,368	0	1.8
Solar PV (Conference Centre)	-	5,000	0	400	\$30,287	0	75.7
Total		1,306,400	5,600	\$137,000	\$356,535	\$112,957	1.8

A full list of completed projects and studies is included in Appendix B.

3.1.1 Continuous Optimization Program

UNBC is enrolled in BC Hydro's Continuous Optimization (C.Op) program for energy monitoring and retro-commissioning of existing buildings. The program at UNBC includes nine buildings over a period of six years. As part of the C.Op program, BC Hydro provides funding for a contractor(Prism Engineering for UNBC), to examine existing buildings and recommend low-cost operational improvements to building HVAC and lighting control systems. After measures have been recommended, we are responsible for covering the cost of implementing the projects. To date we have successfully completed the implementation phase in three of our nine enrolled buildings (the Agora, Teaching Lab, and Research Lab).

In FY2016, we implemented energy conservation measures in three additional buildings: the Northern Sport Centre, the Administration Building, and the Medical Building. The measures in these three buildings are expected to save 694,000 kWh of electricity, 1,900 GJ of natural gas, and 1,700 GJ of district heat annually. At a total implementation cost of \$72,400, the simple payback is less than 1 year.

Additionally, Prism Engineering investigated our final three buildings for savings opportunities: the Library, Conference Centre, and Teaching & Learning Building.

3.1.2 Prince George Campus Exterior Lighting Retrofit

In fall 2015 we replaced all of the street lighting, parking lot lighting, and most of the lighting on the exterior of the buildings around the Prince George campus and Northern Sport Centre with energy efficient LED fixtures. Each street and parking lot light was connected to a central dimming system. The dimming system allows for dimming of individual fixtures to provide the optimal level of lighting on the streets and in the parking lots. In addition, the dimming schedule further reduces the light output of the fixtures in the late evening and early morning when much of the campus is unoccupied.

Project funding is provided by BC Hydro (\$65,860), the AVED CNCP (\$44,700), the Northern Sport Centre (\$58,900), and the UNBC Loan Fund (\$54,800). Based on utility savings alone, the simple payback for the street lighting project is just over 5 years. Additional savings of roughly \$3,000 per year will be realized due to the decreased maintenance of replacing burnt out lamps in the old fixtures, lowering the simple payback to 4.9 years.

3.1.3 Conference Centre Air Handler Hot Water Conversion

The Conference Centre air handler that served the Thirsty Moose Pub kitchen was one of the last remaining natural gas fired air handlers on the Prince George campus. This project converted the pub air handler to use hot water from our district heating system instead of natural gas, using an existing unused chilled water coil to supply hot water (glycol). In order to provide heat, we disconnected the chilled water piping, and connected it to our glycol system. We commissioned a small 100% outdoor air handler (AHU3) and used excess capacity on a larger air handler (AHU2) to achieve greater energy savings and reduced installation costs by reusing the glycol piping that fed AHU3.

Funding for this project was provided by the AVED CNCP (\$6,368). Utility cost savings of roughly \$3,500 per year are achieved by switching from natural gas to lower cost district heating. Additional electricity and heat will be saved from decommissioning the 100% outdoor air AHU3. The simple payback for this project is less than 1.5 years after incentives.

3.1.4 Conference Centre Solar Photovoltaics

The Facilities Department received \$24,300 of funding from the UNBC 25th Anniversary Fund and \$5,000 from the Pacific Institute for Climate Solutions (PICS) to install a solar photovoltaic system on the roof of the Conference Centre. School District 57 donated 16 panels that were previously installed on the Highglen Montessori School until a fire in April 2013 shut down the school and rendered the panels unused. In addition to the 16 donated panels, we purchased 11 panels, 9 of

which were installed on the roof and 2 that are to be used in classroom demonstrations as part of an educational program under development. The system of panels is expected to produce roughly 5,000 kWh per year of electricity, worth \$400 a year.

3.1.5 Workplace Conservation Awareness

In FY2015, UNBC was accepted into the BC Hydro Workplace Conservation Awareness (WCA) Program. The goal of the program is to promote knowledge and awareness, inspiring conservation and leadership, and generating the support of staff, faculty, and students required to save energy. In January 2015, we started working with Prism Engineering to develop a WCA program that will help us improve our communication and awareness around energy conservation while working towards our EMA targets.

As part of WCA, we rolled out a Residence Challenge to promote sustainable living in the residences. Each suite could complete a certification checklist by committing to specific energy conservation actions such as turning off lights, turning down thermostats, and taking shorter showers. The Residence Challenge ran from September to November, 2015, and resulted in gas and electricity savings of 5% and 10 % respectively.

The UNBC Green Team was started in the fall of 2015 to help with energy conservation awareness and initiatives. The first task of the Green Team was the Lights Off campaign, where the UNBC community was asked to post photos to Instagram, Twitter, or Facebook of themselves turning off lights around campus. The Green Team also coordinated the Sweater Day and Earth Hours campaigns, and participated in UNBC's annual Green Day. The Green Team is comprised of members from across the main campus, listed in Appendix F.

3.2 FY2017

In FY2017, UNBC will complete projects projected to save over 1,000,000 kWh annually as outlined in Table 4. Of the implemented projects, 682,000 kWh of savings will count towards the BC Hydro Energy Manager target. UNBC intends to claim savings for the Residence 1 Baseboards as a Program Enabled project, but it is unclear if the project will be accepted due to the fuel-switching nature of the project.

3.2.1 Continuous Optimization Program

In FY2017, we will implement energy conservation measures in the final Phase of buildings: the Library, Conference Centre, and Teaching and Learning Building. The measures in these three buildings are expected to save 627,000 kWh of electricity, and 6,048 GJ of district heat annually. At a total implementation cost of \$93,700, the simple payback is just over 1 year.

3.2.2 Exterior Lighting Retrofits

In fall 2015 we replaced all of the street lighting, parking lot lighting, and some of the lighting on the exterior of the buildings around the Prince George campus and Northern Sport Centre with energy efficient LED fixtures. In FY2017 we replaced the remaining inefficient exterior lighting with LED lighting on the Prince George Campus, and Terrace Campus. In addition to replacing lighting at the Terrace campus, we added extra fixtures in the parking lot and west side of the building to enhance the safety of the facility.

3.2.3 Workplace Conservation Awareness and Energy Wise

In December 2016 we will complete the WCA program and transition to the Energy Wise Network Program. For the Energy Wise program, we will complete two employee engagement campaigns, with the help of the UNBC Green Team, to promote energy conservation on campus: an Elevator campaign, and a Food services campaign.

3.2.4 Residence 1 Baseboard Conversion

In summer 2016, the first of two residence buildings was renovated. As part of the renovation, all heating was converted to hydronic heating supplied by our new low-temperature district heating

loop. The Loan fund contributed \$100,000 to convert the electric baseboard heaters to hydronic radiators which is expected to save roughly 326,000 kWh of electricity annually. The switch to bioenergy as a heat source will result in utility cost savings of \$22,500 per year.

Table 4 - FY2017 Project List

Committed Projects	BC Hydro Project Number	Electricity Savings (kWh/y)	Heat or Gas Savings (GJ/y)	Utility Cost Savings (\$/y)	Project Cost (\$)	Incentive (\$)	Simple Pay Back (y)
C.Op - Phase 2 - Handoff and Coaching	COP10-421 COP10-415 COP10-414	0	0	0	\$23,475	\$23,475	0
COp - Phase 3 - Conference Centre Implementation	COP10-418	61,500	1200	\$12,300	\$19,100	0	1.6
COp - Phase 3 - Library Implementation	COP10-417	406,400	2800	\$53,600	\$39,400	0	0.7
COp - Phase 3 - T&L Implementation	COP10-422	159,100	2000	\$25,700	\$35,200	0	1.4
Main Campus Exterior Lighting	BCH-03047	53,000	0	\$4,240	\$20,411	\$8,073	2.9
Corner Store Renovation Lighting	PSPX153444	1,230	0	\$100	\$2,047	\$332	17.2
Terrace Campus Exterior Lighting (PSPX)	PSPX153073	504	0	\$40	\$170	\$77	2.3
Workplace Conservation Awareness	BCH-02090	0	0	0	\$4,000	\$4,000	0.0
Energy Wise Network Program	BCH-03654	0	0	0	\$1,000	\$1,000	0.0
BC Hydro Project Subtotal		681,734	6,000	\$95,980	\$144,803	\$36,957	1.1
Residence 1 Baseboards	-	326,000	-1534	\$22,500	\$100,000	0	4.4
Terrace Campus Exterior Lighting	-	4,900	0	\$390	\$9,146	0	23.3
Total		1,012,634	4,466	\$118,870	\$248,949	\$31,957	1.8

3.3 FY2018

In FY2018, we will complete the final handoff and coaching phases of the C.Op program, as well as replacing much of our linear fluorescent, magnetic ballasted lights with LED fixtures. If the Residence 2 baseboard replacement is accepted as a Program Enabled project, we will be claiming just over 700,000 kWh worth of projects.

Table 5 lists the projects to be completed in FY2018, where all of the funding is available from the Loan Fund. If the Residence 2 baseboard replacement is accepted as a Program Enabled project, we will be claiming just over 700,000 kWh worth of projects.

Table 5 - FY2018 Project List

		Electricity Savings	Heat or Gas Savings	Utility Cost	Project Cost	Incentive	Simple Pay Back
Committed Projects	BC Hydro Project Type	(kWh)	(GJ/year)	Savings (\$/year)	(\$)	(\$)	(years)
C.Op - Phase 3 - Handoff and Coaching	COP10- 417,418,422	0	0	0	\$18,600	\$18,600	0.0
Utilidor Lighting Controls		46,000	0	\$3,700	\$21,000		5.7
Power Plant Lighting retrofit	Custom Incentive	33,000		\$2,600	\$29,000		11.2
Library Lighting	Custom Incentive	150,000		\$12,000	\$150,000		12.5
Conference Lighting	Custom Incentive	50,000		\$4,000	\$50,000		12.5
Administration Lighting - Floors 2 and 3	Program Enabled	118,000		\$9,440	\$112,000		11.9
Res 2 baseboards	Program Enabled	310,000	-1,459	\$22,000	\$100,000		4.5
Power Plant/Bioenergy Controls Optimization	n/a	tbd	tbd	tbd	tbd		
Total		707,000	-1,459	\$53,740	\$480,600	\$18,600	4.5

3.4 FY2019

As the Loan Fund will be well established in the seventh year of operation, there will be the opportunity to start funding larger projects such as flue-gas heat recovery at the Bioenergy Plant, and HVAC system redesign for our server rooms in the Administration building. A refined list of projects will be formed over the upcoming year.

4. ENERGY SAVINGS

The energy management goals are two-fold: to reduce energy consumption, and to save money on utilities. The two are linked, but the amount spent on utilities is dependent on both consumption and utility rates.

The first energy targets at UNBC were: a 10% reduction in electricity use, a 10% reduction in heating, and an 80% reduction in natural gas consumption from 2010 to 2015. The second set of targets are a 25% overall reduction in energy use, and an 85% reduction in natural gas consumption by 2020, compared to 2009/2010. The new targets allow for switching between fuel types to reduce operating costs without affecting the energy reduction target. If separate targets were maintained for electricity and heat reductions, projects such as the baseboard heating conversion would see a major decrease in electricity and a major increase in heating use.

4.1 Key Performance Indicators

Key performance indicators (KPIs) are the identified variables that drive energy consumption. UNBC has examined a number of potential performance indicators, with the goal of choosing those that most accurately reflect the factors that affect our energy usage. Floor area, weather, and building occupancy are typical indicators that have proven useful for normalizing data to allow for fair comparisons.

Floor area quantifies the size of the University, and directly relates to the amount of energy we consume. This has been our chosen method of inter-building comparison and has proven very helpful in determining where to prioritize energy reduction efforts.

The annual weather, as measured by heating degree days (HDD) and cooling degree days (CDD), is the single largest driver of energy use for a northern campus such as UNBC. All comparisons of energy data on campus over differing time periods require that outside temperature is taken into account.

Occupancy has been considered as a performance indicator but is not universally applicable to all campus buildings. It is included in setting energy baselines for specific buildings such as the residences where occupancy data affects energy usage. However, occupancy data for the rest of campus does not play a role in determining energy intensity nor would it be helpful in determining where to focus energy reduction efforts.

In 2012, sub-meters were installed at the Prince George campus to measure electricity, gas, district heating, and district cooling loads for individual buildings. This has allowed us to: rank buildings based on energy performance; compare buildings against national averages; identify buildings with higher than normal energy use; and monitor building performance over time. The energy intensity of each building is reported in Figure 1, broken down into electricity, gas, chilled water, and bioenergy intensity.

Figure 1 shows our Enhanced Forestry Lab (greenhouse) as the most energy intensive per square meter, followed by our three lab buildings and our two power plants. These results are not surprising. The forestry lab is a free-standing greenhouse with glass walls/roof and a high heating demand. Lab buildings operate with 100% outdoor air, no air recirculation, and fume hood exhaust requirements. Many labs operate 24 hours a day under these conditions. In terms of electricity intensity the Power Plant and Bioenergy Facility belong to the group of buildings with industrial type energy intensity and use the most electricity per square meter. They operate 24 hours a day and contain as the boilers, pumps, conveyors, and augers which are required to produce heat and distribute it throughout campus, and as such shoulder a disproportionate portion of campus energy requirements.

In March 2015, the Research Lab, and Teaching Lab completed the Implementation Phase of Continuous Optimization (C.Op) where operational efficiencies such as night-time setbacks, weekend and holiday schedules, air exchange rate reductions, damper controls, and hot water

pumping strategies were instituted. The implemented measures have already resulted in a significant reduction in energy intensity. Compared to last year, the Research Lab used 44% less energy and the Teaching Lab used 30% less energy, however it is important to note that this year was 13% warmer than last year.

In March 2016 the Administration building, the Medical building and the Northern Sports Centre completed the Implementation Phase of Continuous Optimization. Significant energy reductions to these buildings are expected over the course of the coming year as a result of the implementation. In the current fiscal year, the remaining three buildings (Library, Conference Centre, and Teaching & Learning) will complete C.Op implementation, and by March of 2018 the impact of the completed optimization project will be evident.

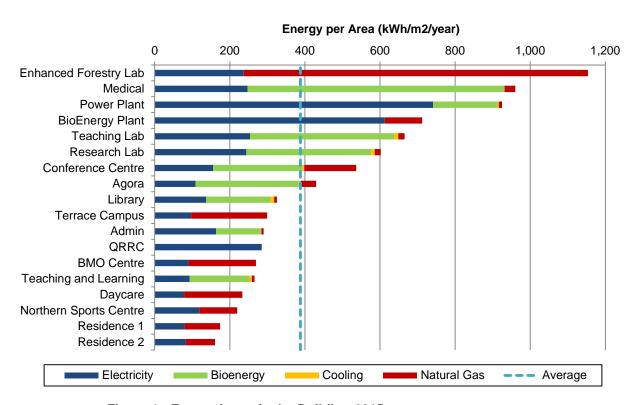


Figure 1 - Energy Intensity by Building 2015

Table 6 summarizes the annual energy consumption, energy intensity, cost intensity, and savings compared to last year for each building under the Energy Management program.

The average Building Energy Performance Index (BEPI) for UNBC is 388 kWh/year/m²: a 12% reduction from last year. Significant savings were observed for the majority of the buildings mainly due to this year being warmer than last year. The Research Lab (28%) and Teaching Lab (26%) saw the largest reduction in energy intensity as they were part of the first phase of the C.Op implementation. In terms of poorly performing buildings, of special note is the QRRC saw an increase in electricity of 32% compared to last year. This increase is due to the summer research that was performed using a large 50hp pump instead of the usual 25hp pump. In addition, the Facilities crew have planned a visit in November 2016 to help address the large increase in energy consumption.

Table 6 - Building Energy and Cost Intensity

	Building Area m2	Annual Energy Consumption kWh/y	Annual Cost \$/y	Energy Intensity kWh/m2/y	Cost Intensity \$/m2/y	Savings From Last Year %
Research Lab	7,581	4,555,553	184,913	601	24	28%
Teaching Lab	7,921	5,260,298	206,184	664	26	26%
Daycare	639	149,427	7,510	234	12	13%
BioEnergy Plant	1,046	745,268	57,723	712	55	11%
Northern Sports Centre	13,485	2,957,947	174,664	219	13	11%
Teaching and Learning	10,130	2,685,720	101,646	265	10	11%
Agora	8,556	3,673,167	118,784	429	14	10%
Residence 1	7,425	1,294,419	68,373	174	9	10%
Terrace Campus	1,314	394,531	31,754	300	24	8%
Enhanced Forestry Lab	931	1,073,546	46,675	1,153	50	8%
Residence 2	7,425	1,194,675	66,180	161	9	6%
Admin	9,161	2,650,950	130,655	289	14	5%
Medical	4,468	4,286,445	132,687	959	30	4%
Conference Centre	3253	1744005	67339	536	21	4%
Maintenance Building	352	42,059	4,666	119	13	-2%
Power Plant	1,253	1,155,903	73,385	923	59	-4%
BMO Centre	1,320	355,180	24,283	269	18	-9%
Library	11,754	3,817,706	162,454	325	14	-10%
QRRC	812	234,735	26,920	289	33	-34%
Total	98,826	38,271,533	1,686,794	387	17	12%

Compared to other institutions, the UNBC BEPI of 387 kWh/year/m² was significantly below the outdated 719 kWh/year/m² reported by Natural Resources Canada for Canadian universities and colleges in 2003. Though there are more recent Canadian BEPIs being reported, there has been little updated data for universities and colleges. Since the energy consumption of a building is highly dependent on the function of a building, it is important to compare buildings with similar functions. When looking at individual buildings, the Building Owners and Managers Association of Canada: Building Environmental Standards program (BOMA BESt) reported BEPI averages in 2012 for certified multi-unit residential buildings and office buildings at 205 and 331 kWh/m², respectively. When comparing to the BOMA BESt multi-unit residential buildings, both of our Residences fell below the reported averages. Our Administration and BMO buildings are our only buildings with primarily offices, and are both outperforming the BOMA BESt average for office buildings.

4.2 Electricity Savings

In FY2016, UNBC decreased electricity consumption by 1,244,000 kWh compared to last year. At the marginal rate of electricity these savings are worth \$138,000, however, due to the 6% electricity rate increase, UNBC saved \$62,800 on electricity. When compared to our electricity baseline, we saved 3,860,000 kWh worth of electricity over the past year; \$409,000 in avoided cost savings. Figure 2 and Figure 3 show the overall electricity consumption and costs compared to baseline consumption over the past six years.

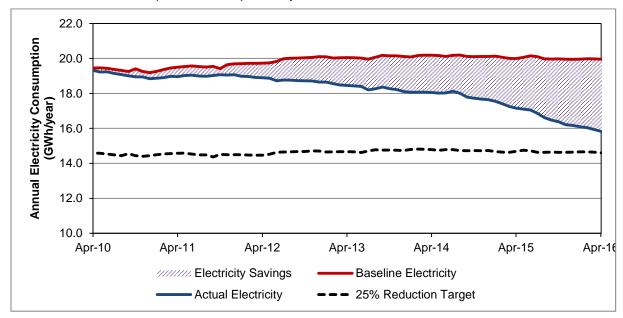


Figure 2 - Historical Annual Electrical Usage Compared to Baseline

Figure 2 demonstrates an overall reduction in electricity consumption over 6 years of 17%, and a projected reduction of 32% by 2020 if we are to implement the projects outlined in Section 3.

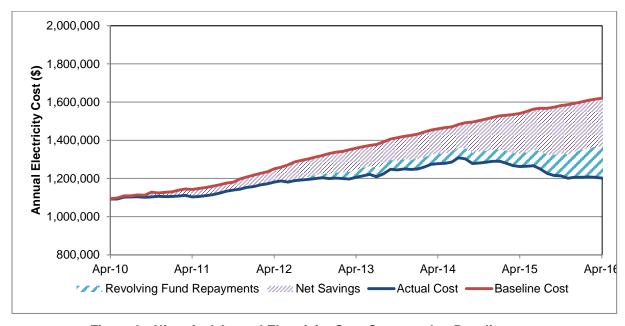


Figure 3 - Historical Annual Electricity Cost Compared to Baseline

Figure 3 shows the baseline, actual, and avoided costs of electricity since the start of the Energy Management program at UNBC, including the portion of savings that are used to repay the revolving loan. If our electricity consumption was to remain constant at our FY2010 baseline consumption, we would have spent an additional \$409,000 on electricity in FY2016.

Over the past 6 years, \$1,105,000 in electricity costs were avoided due to our reduction in electricity consumption.

4.3 Bioenergy and Natural Gas Savings

The baseline for heating was developed before the Bioenergy Plant came online in 2009/10 and takes into account the natural gas consumption as it relates to HDDs.

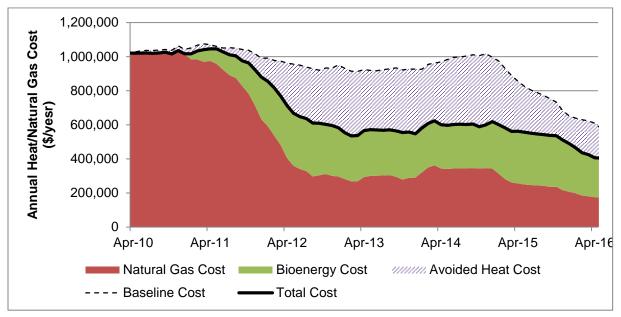


Figure 4 and Figure 5 show our annual heating breakdown and costs. The green shaded area indicates the bioenergy portion, and the red shaded area indicates the natural gas portion of our total heating.

Compared to last year, we have seen a 24% reduction in our natural gas consumption and a 11% reduction in our total heat consumption this year. This major reduction is primarily due to the savings seen from the Phase 1 implementation of C.Op in our lab buildings.

5 shows significant cost savings from the switching from natural gas to bioenergy with the commissioning of the Bioenergy Plant in FY2011. Since FY2010, UNBC has avoided \$1,480,000 worth of heat costs, primarily due to the fuel switching from natural gas to bioenergy with the commissioning of the Bioenergy Plant.

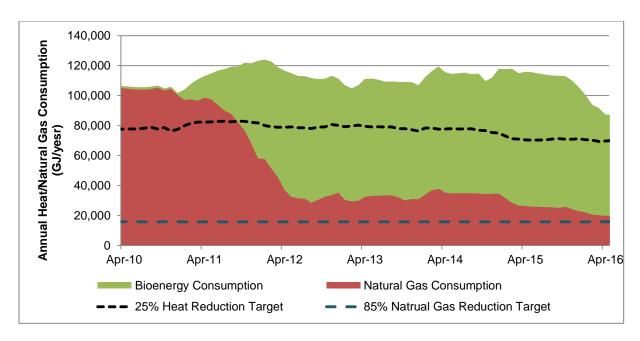


Figure 4 - Historical Annual Bioenergy and Natural Gas Consumption

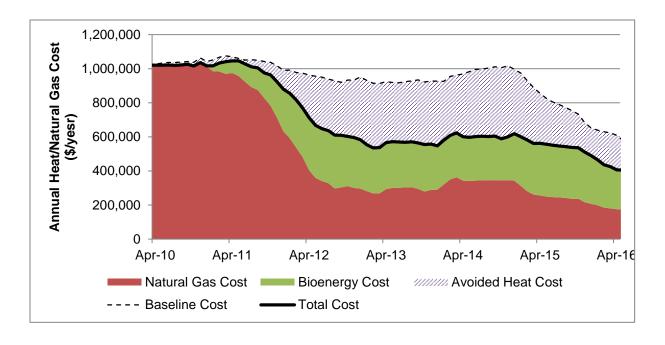


Figure 5 - Historical Annual Heat and Natural Gas Costs

4.4 Greenhouse Gas Reductions

As part of the public sector within the province of British Columbia, UNBC is required to purchase carbon offsets for non-biogenic greenhouse gas emissions associated with building energy consumption, mobile fleet fuel, and paper consumption. The University measures and reports its greenhouse gas emissions using SmartTOOL, through an initiative of the provincial government. Table 7 summarizes the annual carbon emissions reported from SmartTOOL.

With the commissioning of the Bioenergy Plant in 2011 and the first phase of C.Op implemented in 2015, UNBC has seen a 73% decrease in carbon emissions for offset (non-biogenic). It is important to note that emission factors are constantly being revised, leading to large discrepancies when comparing years. Most notably, a number of emission factors were changed in 2013: the electricity emission factor was lowered from 0.0069 to 0.0040 tCO₂e/GJ; and the emission factor for wood combustion was doubled from 0.047 to 0.096 tBioCO₂/GJ. The change in wood emission factor resulted in a major increase in total emissions compared to 2012.

Table 7 - Greenhouse Gas Emissions (t CO2e)

Source	2015	2014	2013	2012	2011	2010
Fuel Combustion	1,319	1,889	1,719	1,678	3,021	5,185
Biogenic Fuel Combustion	7,368	7,431	6,814	3,525	2,395	0
Electricity	189	178	260	461	470	473
Paper	37	67	60	63	80	40
Mobile	5	29	25	24	19	17
Mobile (Biogenic)	1	1	1	1	1	0
Total	8,919	9,595	8,875	5,751	5,985	5,715
Total (Biogenic)	7,369	7,432	6,814	3,525	2,396	1
Total for Offset	1,550	2,163	2,061	2,226	3,589	5,714

5. ENERGY MANAGER SUMMARY

Since the beginning of the Energy Management Program at UNBC in 2010, over forty energy projects have been completed totalling annual electricity savings of 3,500,000 kWh. To-date the implemented electricity projects have saved \$537,000. Additional avoided electricity costs of \$568,000 have been observed compared to the historical baseline, and can be attributed to building operation modifications and behavioural changes associated with having a visible Energy Manager in the UNBC community.

In addition to the avoided utility costs from reducing energy consumption, UNBC has received, primarily from BC Hydro, \$1,050,000 in incentives and salary reimbursements for the Energy Manager position.

Figure 6 shows that the Energy Management Program has saved UNBC \$2,155,000 in avoided electricity costs, incentive funding, and salary funding over the past six years.

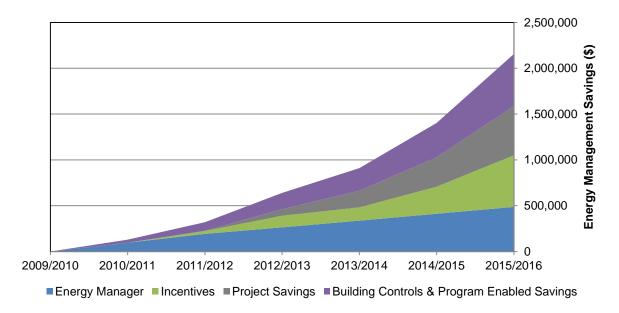


Figure 6 - Energy Management Savings Summary

With a major focus on electricity reduction projects, we have successfully met the electricity reduction targets outlined in the previous Energy Policy, and in the BC Hydro Power Smart Energy Manager contract. We have finalized new Energy Policy targets to be achieved by FY2020 that will focus primarily on utility cost reductions, namely a 25% reduction in energy consumption, and an 85% reduction in fossil fuel consumption compared to FY2010. With a continued focus on projects, we are also expanding our employee and staff engagement to reach these new targets.

APPENDIX A – COMPLETED PROJECT LIST

Project Name	Description	Electricity Savings (kWh/y)	Total Heat Savings (GJ/y)	Natural Gas Savings (GJ/y)	Total Cost Savings (\$/y)	Total Project Cost (\$)	Incentives (\$)	Simple Pay Back (years)	Projected Completion Date
Main Campus Exterior Lighting	Replace main campus exterior lighting with LEDs	53,000	0		\$4,240	\$20,411	\$8,073	2.9	Aug-16
Terrace Campus Exterior Lighting	Replace all outside lighting with LED	4,900	0	0	\$392	\$9,146	\$0	23.3	Apr-16
Terrace Campus Exterior Lighting (PSPX)	Replace 1 MH with LED	504	0	0		\$170	\$77	2.3	Jun-16
Corner Store Renovation	Upgrade T8 to LED	1,230	0	0	\$98	\$2,047	\$332	17.4	Sep-16
COP - Phase 3 - Investigation	Library, Conference Centre, T&L investigation					\$45,083	\$45,335	0.0	Feb-16
Conference Centre Air Handler	Convert natural gas air handler to district heating system (NG to bioenergy)	0	30		1 - 1 - 1	\$6,386	\$6,386	0.0	Mar-16
0	Replace parking lot and street lights with LEDs, metal halide wallpacks with LEDS on	167,000	0		\$13,360	\$164,187	\$89,860	5.6	Dec-15
Street Lighting	Admin, Conf, Research Lab, Power Plant			1	A 2.222	400.007	000 747		5 45
NSC Lighting	Replace parking lot, exterior lighting, and interior wallpacks with LEDs	86,000	0	-	4 - 1	\$60,027	\$20,717	5.7	Dec-15
Workplace Conservation Awareness 25th Anniversary Solar PV	Awareness campaigns supported by BC Hydro Program Install 25 solar PV on NUSC (16 from SD57, 9 purchased by UNBC)	354,400 5,000	1,200	285	\$33,950 \$400	\$1,762 \$30,287	\$1,762 \$29,300	0.0 2.5	Dec-15 Jun-15
COp - Phase 1 - Medical Implementation	Medical Implementation	97.577	807	·		\$30,207	\$29,300		Mar-16
COp - Phase 2 - Admin Implementation	Admin Implementation	143.629	899		· /	\$46,083	\$0		Mar-16
COp - Phase 2 - NSC Implementation	NSC Implementation	452.829	1,922	1,922	\$51,602	ψ10,000	\$0		Mar-16
Admin Daylight Harvesting	Connect Admin basement lighting to daylight sensor	2,800	.,	-,,	224	0	0		
Medical Humidifier Upgrade	Replace electric humidifier with high pressure injection and hot water from Bioenergy	492,000	-280	-74	47,185	150,766	74,941	1.6	Mar-15
COp - Phase 1 - Research Lab Implementation	Optimize Research Lab building operations	214,178	1,390	368	25,643	48,403	0		Mar-15
COp - Phase 1 - Teaching Lab Implementation	Optimize Teaching Lab building operations	264,035	3,916	1,037	45,090	31,278	0		Mar-15
COp - Phase 1 - Agora Implementation	Optimize Agora building operations	218,495	1,251	331	25,135	25,104	0	1.0	Mar-15
Power Plant AHU	Hardwire AHU with boiler operation	40,000	450	450	12,900	60,442	74,472	-1.1	Mar-15
Teaching Lab Penthouse	Replace T12 fluorescent lighting with T8	1,022		1	90	800	110	7.7	Feb-15
Reef Fish Tank	Replace metal halides with LEDs	2,300		1	180	700		3.9	Jan-15
Chiller Operating Schedule	Optimize operating schedule (night shutdowns, september shutdown)	27,000		1	10,000	0	0	0	Oct-14
COp - Phase 2 - NSC Investigation	ECMs identified for NSC	0		_	0	20,665.45	20,330		Sep-14
COp - Phase 2 - Admin Investigation PHW BTU meter install	ECMs identified for Admin Install BTU meters on North and South hot water loops leaving Power Plant	0		1	0	18,417.70 16.000	18,119	0.0	Sep-14 Sep-14
	Replace 50W and 70W MH wallpacks with 13.5W LEDs	•			2.100	6,900	945		Sep-14 May-14
Exterior Lighting - Agora/Medical Wallpacks Teaching Lab Pot lights	Replace CFL/incandescent pot lights with LEDs	19,852 56,678		+	8,300	14,100	1.990	1.5	May-14 May-14
Bentley Pot Lights	Replace 2-pin CFL with screw-in LED and 4-pin LEDs	338		+	1.800	12.383	1,990		May-14
Administration Atrium Lighting	Replace high bay lighting with LEDs	6,090		1	600	12,303	0		Jun-14
Power Factor Correction	Connect CT to capacitor bank	0,030			10,700	200	0		Dec-13
C.Op - Phase 1 Investigation	ECMs identified for Agora, Teaching Lab, Research Lab, and Medical Building	0			0	60.242	60,242	0.0	Sep-13
Exterior Lighting (Bollards)	Replace exterior bollard lighting with LED/motion sensing models	7000			669	53,123	1,925	76.5	Sep-13
	Connect Agora lighting to daylight sensor to turn off all non-essential lighting during				2,500	33,123	,,==	0.0	
Agora Daylight Harvesting	daylight	24600			,	0	0		Jun-13
	Connect Admin atrium lighting to daylight sensor to turn off all non-essential lighting				3,400			0.0	
Admin Daylight Harvesting	during daylight	33000				0	0		Jun-13
Exterior Lighting (Globes)	Replace exterior globe lights with LED retrofit kits	59,000			6,000	53505	16,227	6.2	Oct-13
Low-flow showerheads	Replace showerheads in Residence with low-flow models	0	1,400	1,400	22,000	975	0	0.0	May-13
QRRC lighting upgrade	Replace T12 fluorescent lighting with T8	7,752			730	5128.72	1257.86	5.3	Mar-13
EFL Lighting Retrofit Canfor Theatre lighting -second round	Replace T12 fluorescent lighting with T8 Revisit the lighting provision for the lecture space	1,181 55,239		+	111 5,204	578 45.845	139 18,339	4.0 5.3	Jan-13 Dec-12
Warehouse lighting	Replace MH high bay fixtures in warehouse	43511		+	4.099	7201	2875	1.1	Dec-12 Dec-12
NSC Soccer field	Replace MH fixtures with impact resistant LED	130.598			12,302	125,188	40.000	6.9	Sep-12
Building energy displays	Install monitors outside Green Centre to display energy related data	100,000			12,302	120,100	40,000	0.5	Sep-12
NSC Field house relamp	New lamps for T5HO over field house	51,300			4.832	10,000	1,160	1.8	Aug-12
Coil Cleaning	Nalco coil cleaning initiative	224.610			21.158	23.523	9.684	0.7	Aug-12
NUSC Event Space LED	Replace incandescent lighting with LED	11,344			1,159	6,090	2,634	3.0	Jul-12
Terrace lighting upgrade	Replace T12 fluorescent lighting with T8	16,593			1,488	14,805	3,994	7.3	Apr-12
Utility meter installation	Install submeters for gas, electric, heat, cooling, domestic water								Jun-12
Residence Lighting - Common Areas	Replace T12 fluorescent lighting in residences with T8	14,414			1,358	17,216	3,208	10.3	Mar-12
Residence Lighting - Suites	Replace T12 fluorescent lighting in residences with T8, Incandescents with CFLs	250,930			23,638	61,547	24,090	1.6	Mar-12
TLC Atrium Daylight Harvesting	Connect TLC atrium lighting to daylight sensor to turn off all non-essential lighting during	9,519			897				Mar-12
	daylight								
Theatre lighting	Replace incandescent lighting with LED	78,705		4	7,414	22,811	11,988		Apr-12
Medical AV Cooling	Install fans to take advantage of free cooling overnight	22,950			2,162	11,000	0		
Admin Chiller	Replace water cooled centrifugal chiller with air cooled model Store ice/snow for summer cooling	98,600			13,400	70,000	0	5	
Ice Mountain Canfor Theatre Lighting	Replace incandescent lighting in Canfor Theatre with LED	3,700	+	+	349	6.000	0	2	Nov-11 Aug-10
Terrace Boiler	Replace incandescent lighting in Cantor Theatre with LED Replace aging natural gas boiler for Terrace campus	3,700	300	300		45,000	0		
Green Centre Lights	New Green University Center offices - LED lighting	1,240		300	117	640			
Winter Garden Lights	Convert to Hi-Bay LED	2,630	<u> </u>	†	248	640	0	2.6	Jan-11
District Energy Pump Study	Review system flow dynamics and pumping requirements for district energy water	2,000		1	240	340	†	2.0	May-11
3,7 - 1 7	distribution loops								,
NUSC Event Space (Round 1)	Halogen to LED - testing 1 fixture	960			90	402	160	4.4	Mar-12
Rotunda Ramp	Halogen to LED	2,475			233	774	390	3.3	Aug-12
Rotunda Gallery	Halogen to LED	5,931			559	1,987	1,165		Aug-11
Agora North Entrance	Metal Halide to LED	999			94	476	244		
Bookstore/Cafeteria Lighting	Replace halogen and incandescent lighting with LED	20,796			1,959	6,684	3,649		Aug-11
Thirsty Moose Lighting	Replace halogen and incandescent lighting with LED	6,034		1	568	2235	1582	1.1	Dec-10
Wind turbine	Preliminary investigation into installing wind generation on campus								Sep-11
Totals		3,896,468	13,285	7,270	475,766	1,445,365	597,702	1.8	

Behavioural/ Education Programs (If applicable)	Description	Electrical Svgs (kWh)	Heat Savings (GJ)	Total Utility Savings (\$)	BC Hydro Incentive (\$)	Date Started	% Complete	Projected Completion Date
Earth Hour 2015	Announce email, shut down lighting and air handlers, lighting audit (savings over 3 hours)	480		52		Mar-15	100	Mar-15
Sweater Day 2015	Social Media campaign, set point adjustment (savings over month)	0	350	2100	200	Feb-15	100	Feb-15
Residence competition	Two residence buildings compete to lower electrical consumption	2,400		150	0	Oct-10	100	Apr-11
Residence competition	Two residence buildings compete to lower electrical consumption	4,300		405	0	Oct-11	100	Nov-11
Wintergreen 2011	Promote turning off computer and HVAC during winter holidays	41,200		3,100	0	Dec-11	100	Jan-12
Wintergreen 2012	Promote turning off computer and HVAC during winter holidays	79,000	370	11,000	0	Dec-12	100	Jan-13
Wintergreen 2013	Promote turning off computer and HVAC during winter holidays	78,000	500	12,000	0	Dec-13	100	Jan-14
Wintergreen 2015	Promote turning off computer and HVAC during winter holidays	74,700	210	10,400	0	Dec-15	100	Jan-16
Workplace Conservation Awareness	Energy conservation staff engagement program	354,400	1200	33,900		Jan-15	67	Dec-16
Totals		634,480	2630	73,107	200			

APPENDIX B - POTENTIAL PROJECTS

Potential Projects											
		Potential				Potential	Projected				
		Electrical	Other Fuel		Projected	BC Hydro	Simple				
Project Name	Description	Svgs (kWh)	Svgs	Operational)	Total Cost	Incentive		Next Steps			
2x4' 3xT8-mag LED retrofit (3 phases)	2x4' 3xT8(mag ballast) to linear LED	365,000		39800	320000		8.0				
Power Plant Lighting retrofit	Power Plant highbay lighting replaced with LEDs	33,000		3600	29000		8.1				
2x4' 3xT8-elec LED retrofit	2x4' 3xT8 (elect ballast) to linear LED	24,000		2600	33000		12.7				
Restroom Lighting Controls	Motion sensors in restrooms							Find suitable locations, and estimate sa	vings		
Stairway Lighting Controls	Motion sensors in stairwells							Estimate savings			
Hallway Lighting Motion Sensors	Motion sensors in hallways							D : E1E			
Essential Lighting Review	Review current essential lighting and switch excess lighting to non- essential							Review lighting requirements for essent	ial lighting		
Server room HVAC	Replace 2 Liebert chillers in Admin server room	72,000		7,200	130,000		18.1				
Chiller Bypass	Install heat exchange to bypass chiller in shoulder seasons	100,000		24,900	120,000		4.8	Being studied by 5th year engineering of			
Residence Behavior	Community-based social marketing aimed at forming positive behaviors relating to energy and water use							Determine best way to engage residence	e occupants		
Flue Gas Heat recovery Option 1 (Peak Heat)	Recover latent heat from Bioenergy flue gases into low temperature loop for peak building demand		800	8,800				Detailed engineering to build on work of undergraduate students	Environmen	tal Engineering	Master's and
Flue Gas Heat recovery Option 2 (Peak Heat + Res Baseboards)	Recover latent heat from Bioenergy flue gases into low temperature loop for peak building heat and residence baseboards		2,100	23,100							
T&L Heat Recovery	Heat Recovery in T&L building										
District Heating Network Study	Study the district heating network to improve heating efficiency and reduce heat waste							Data and operations analysis			
Ventilation Review	Review ventilation standards, and modify ventilation rates as appropriate		•					Review standards and current ventilation	n rates		-
EFL Grow Light Retrofit		31,040		2,500	32,000		12.8	8			
Research Lab Heat Recovery											
Library Archives AC/Dehumidification											
Totals		625,040	2,900	112,500	664,000	0	5.9				
Approved Projects											
		Flantsiant	O(1) F1	Total Svgs		DO Hardan	0:1-				Projected
Drainet Name	Description	Electrical	Other Fuel	(Energy +	Total Cost	BC Hydro	Simple	Status			Completion
Project Name Residence 2 Baseboards	Description Replace electric baseboards in Res 2 with hot water units	Svgs (kWh) 310,000	Svgs -1.459	Operational)	100.000	Incentive	Pay Back 4.5	Status			Date Aug-17
T8 mag ballast LED retrofit phase 1	2x4' 3xT8(mag ballast) to linear LED	45,600	-1,459	5,000	40,000		8.0				Aug-17
Power Plant/Bioenergy Controls Optimization	Control NG boiler startup/shutdown to minimize NG use	45,000		3,000	40,000		0.0				+
Utilidor Lighting Controls	Switch portion of lighting to non-essential, and add occupancy sensors	46.000		5,000	21.000		4.2				+
Power Plant lighting	Owner portion or lighting to non essential, and add occupancy sensors	33.000		2,600	29,000		11.2				+
Totals		434,600	-1,459	34,600	190,000	0					
Projects In Progress		10 1,000	.,	0 1,000	100,000		0.0				
				Total Svgs							Projected
		Electrical	Other Fuel	(Energy +		BC Hydro	Simple		Date		Completion
Project Name	Description	Svgs (kWh)	Svgs		Total Cost	Incentive	Pay Back	Status	Started	% Complete	Date
Sustainable Communities Demonstration Project - Phase 1a	Connect EFL, Residences and Daycare to Bioenergy plant, using excess capacity from pellet boiler or flue gas heat recovery to provide hot water.	-100,000	6,580	80,000	2,000,000		25.0		Oct-12		Aug-16
Continuous Optimization - Phase 3 Implementation	Optimize building systems for Conference, Library, T&L	405,000	600	45,000	163,160	82,000	1.8		Jul-14		Mar-18
Heating and Cooling Policy	Implement heating and cooling policy and control strategy to maintain temperature band and minimize heating and cooling waste							Draft policy written, requires occupant consultation and review			Dec 2016
	l temperature pand and minimize neating and cooling waste								1	1	+
Chiller Free cooling								Studied by 5th year Engineering Students	Sep-14		Nov 2018
Chiller Free cooling Botanical Gardens Pump Control	Bypass chiller in shoulder months to provide free cooling to campus Add scheduler to pump, and tune VSD	8,000		800	500	0	0.6		Sep-14 Sep-12	60	Nov 2018 Mar-14

APPENDIX C - COMPLETED STUDIES BY BUILDING

	UNBC Energy Audit	Utility Data Management Prism	Energy Management Information System	HVAC Coil Cleaning	COp Phase 1	COp Phase 2	COp Phase 3	BMO Boiler Replacement Study	Student Studies/Projects
Building	MCW Aug-09	Engineering May-12	Pulse Energy Jun-12	NALCO Aug-12	Prism Sep-13	Prism Aug-14	Prism Jul-15	Prism Feb-16	
Administration									
Agora									
Bioenergy BMO building									Flue Gas Heat Recovery Study
Conference Centre									
Daycare									
EFL									
Library									
Maintenance									
Medical									Heat Recovery Study Humidifier Study
NSC									
Power Plant									District Piping Network Study Renewable Energy Feasibility Study Ice Storage Study Thermal Storage Study
QRRC									
Research Lab									Heat Recovery Study
Residence									Energy Use Survey
Teaching Lab									Heat Recovery Study
Teaching & Learning									
Terrace									

APPENDIX D - ENERGY TEAM AND STAKEHOLDERS

Name	Title	Email	Phone Number	Organization
David Claus	Assistant Director, Facilities Management, Energy Manager	david.claus@unbc.ca	250-960-5590	UNBC
Amanda Drew	Energy Technician	amanda.drew@unbc.ca	250-960-5790	UNBC
Shelley Rennick	Director, Facilities Management	shelley.rennick@unbc.ca	250-960-6413	UNBC
Kevin Ericsson	Chief Engineer	kevin.ericsson@unbc.ca	250-960-7059	UNBC
Dale Martens	Assistant Chief Engineer	dale.martens@unbc.ca	250-960-6449	UNBC
Aaron Olsen	Maintenance and Project Supervisor	aaron.olsen@unbc.ca	250-960-6411	UNBC
Kyrke Gaudreau	Sustainability Manager	kyrke.gaudreau@unbc.ca	250-960-6623	UNBC
Belinda Larisch	Acting Energy Technician	belinda.larisch@unbc.ca	250-960-5790	UNBC

APPENDIX E - UNBC GREEN TEAM MEMBERS

The Green Team is comprised of members from across the main campus, including staff, professors, and students representing a variety of departments, disciplines, and buildings. Membership includes the following individuals:

Kyrke Gaudreau, Carleigh Benoit, Nicole Neufeld, Benjamin Bryce, Alex Aravind, Amelia Kaiser, Kristen Kieta, Hossein Kazemian, Gail Fondahl, Loraine Lavallee, Lenna Shelest, Michael Allchin, Raychill Snider, Wyatt Klopp, Diane Collins, Jane Liang, Brooke Boswell, Belinda Larisch, and Amanda Drew.

APPENDIX F - ENERGY MANAGEMENT ASSESSMENT (EMA) RECOMMENDED ACTIONS

1 0 4	Policy	Tasks List
1.0 1	In su	oport of current energy conservation expectations, confirm with the new executive leadership team rganizational commitment to a clear scope, charter and long-term goal for the energy management am.
	1.1	Work with the executive energy sponsor and UNBC leadership to obtain clarity around the long-term strategy for the organization
		>Ensure understanding of evolving organizational strategic plans
		> Identify areas of current organization strategy with strong links to energy
		>Define the linkages between the overall organizational strategy and energy conservation that can be the basis for energy reduction goals
	1.2	Establish clarity around the scope and long-term goals of the energy conservation program
		>Understand the components that make up the energy conservation strategy
		>Understand the measurable goals of the energy conservation strategy
	1.3	Quantify energy savings from specific measures implemented and initiatives conducted to date
		>Specify numerous projects and activities undertaken to date
		>Specify the financial benefits as well as public image benefits
		>Segregate hardware change-out related savings from operational / behavioral related savings
	1.4	Outline the additional benefits possible by having a quantified, long term goal specifically for energy conservation
		>Include financial benefits to organization
		>Include positive impact to UNBC image
	1.5	Review sample energy policy statements created by other organizations
	1.6	Work with executive energy sponsor to establish a multi-year quantitative goal for the energy conservation program
		>Ensure correlation and integration with the overall UNBC business plan
		>Lay out a clear charter, scope and responsibilities associated with the energy management initiative
Q1	1.7	Update the energy policy (or energy conservation mission statement) with the long-term goal based on a percentage reduction to energy intensity and execution timelines that pertain directly and exclusively to energy conservation
		>If part of a broader sustainability policy, include a separate commitment statement and goal specifically aimed at energy conservation
		>Consider a revised metric for the new long-term energy goal based on energy intensity (ie, kWh/sqm or kWh/student FTE)
Λ-	Cormota	Tasks List
	O Targets / Reporting Set energy intensity reduction targets for each key site or operating area that cascade up to the overal annual reduction target that is set for each year of the long-term goal in the energy management programission statement.	
	2.1	Utilize energy intensity metrics that are relevant to the organization (ie, kWh/sqm, kWh/student FTE, etc) for use in setting EnPIs
	2.2	Use existing understanding of opportunities to develop an overall annual energy reduction target for each year of the energy management mandate time horizon
		>Utilize savings projections from results of technical audits conducted
		>Isolate savings expected through retrofit projects from controllable operational and/or behavioral activities
		>Bottom Up based on identified savings opportunities in specific areas
		>Top down based on desired reduction from overall current usage
	2.3	Identify potential key sites or operating areas to assign separate EnPIs

		>Utilize savings projections from results of technical audits conducted
		>Align with available funding and resources
		>Define "targets" as the level of performance below the current "expected level" metrics based on the desired percent reduction at each site
		>For example, if the "expected level" metric is 3000 kWh/sqm and the desired reduction is 10%, then the "target" should be 2700 kWh/sqm
		>Isolate savings expected through controllable operational and/or behavioral activities from retrofit projects for use in "stretch" targets
		>Bottom Up based on identified savings opportunities in specific areas
		>Top down based on desired reduction from overall current usage
	2.5	As possible, construct energy trend analysis templates by overlaying operating parameters onto collected energy use data
		>Time based energy profiles per metered point
		>Analyze for unnecessary coincidental demands
		>Analyze for energy consumption variance from expectation during specific time periods
		Develop data capture and information distribution plan
	2.6	
		>Establish a methodology for capturing operating data needed for normalizing energy use data, for example: operating hours, square footage, student FTE, weather, etc.
	2.7	Capture EnPI actual versus expected and target to determine ongoing performance
Q2	2.8	Develop standard format for EnPI reporting by key site
	2.9	Present energy intensity performance reports as agenda item in operations and/or site meetings
	2.10	Develop an acknowledgement program for sites reaching or exceeding targets as a motivational tool
		>Name top performing sites in quarterly newsletter
		>Name top improving sites in quarterly newsletter
		>Present an annual (or period) top performer and most improvement award (ie, plaque, banner, etc) that the winner can display for the year (or period)
	2.11	Develop response procedure for out-of-variance conditions identified
		>Augment report format to include documentation of corrective action taken on out of tolerance conditions
Q3	2.12	Identify persistent out of tolerance conditions
	2.13	Target persistent out of tolerance conditions for further energy reduction possibilities

Tasks List

	Plans / Actions Utilize current understanding of opportunities for savings from capital projects, operational opportunities,		
	behavioral initiatives to develop a more comprehensive SEMP that correlates potential savings from capital and non-capital opportunities to consumption reduction targets.		
3.1	Review current long term strategy for the organization		
	>Ensure understanding of the conservation goals in the energy policy		
3.2	Continue to regularly maintain a list of potential activities and/or capital projects to reduce energy costs or improve energy management		
	>Seek ideas from staff, industry case studies, and/or comparative analysis with other entities in the industry		
	>Utilize results of recently conducted technical evaluations of energy using systems		
	>Conduct Follow up investigations in key areas as necessary to obtain investment grade project economics		
	>Opportunities should look beyond capital and hardware change out projects to include operational changes, modifications to maintenance practices, employee awareness communication initiatives, formal training for staff, energy data capture and reporting needs, etc.		
3.3	Identify organizational drivers with strong links to energy and prioritize key activities and projects based on those factors		
	>Capital requirement		
	>Financial investment criteria		
	>Non-financial benefits (public positioning, etc)		
	>Impact on employee bandwidth and available resources		
	>Ease of implementation		

		>Correlation with other organizational objectives
Q1	3.4	In addition to capital asset and retrofit projects, ensure comprehensive planning approach covers all key aspects of energy management
		>Including operation and maintenance protocol; training and resourcing issues; awareness activities; information management and dissemination; procurement guidelines; performance measurements; etc
	3.5	Compile multi-year capital plan for approved energy projects and initiatives
		>Plan should correlate with key objectives of the UNBC Master Plan
		>Plan should depict how each project and activity will contribute to the established energy reduction "stretch" targets for each year of the multi-year plan
		>Plan should depict how each annual plan roles up to the multi-year energy intensity reduction target
		>Plan should identify each key organizational activity and capital project, outline the steps to implementation, and call out the required resources, budget, timeline, and responsible party
		>Improve definition of outer-year components of current multi-year SEMP as possible
		>Utilize the BC Hydro SEMP template as necessary
	3.6	Utilize SEMP as a pivot tool to engage senior business unit managers in clear, interactive negotiation regarding the resource allocation and investment levels (labor and capital) needed to implement the projects and activities necessary to achieve the desired energy reduction targets set by management
	3.7	Obtain approval from senior management for the final multi-year, comprehensive energy plan
	3.8	Execute multi-year, comprehensive plan
Q2	3.9	Monitor and report on progress against the multi-year plan and objectives over time

Tasks List

4.0	Геатs	/ Committees
	cons	rage site (or departmental) energy coordinators to improve broader participation in the energy ervation program. Ensure operating and maintenance procedures instruct personnel to make opriate adjustments in energy-using equipment aimed at maintaining proper conditioned spaced itions while optimizing consumption patterns.
	4.1	Identify key sites that could be made responsible for energy use issues
	4.2	Identify specific personnel responsible for coordinating site energy issues (ie, site energy coordinators)
		>Consider available bandwidth
		>Consider current energy-related skill set
		>Consider current level of authority
	4.3	Ensure site coordinator understanding of established energy conservation targets
		>Understanding of overall UNBC target
		>Understanding of site contribution to overall UNBC target
		>Understanding of behavioral component of the established site target
		>Understanding of behavioral contributions that will contribute towards meeting the established target
	4.4	Ensure acceptance by the site coordinator for the behavioral portion of energy target
	4.5	Communicate to organization the new role of personnel responsible for coordinating site energy issues
Q2	4.6	Identify major energy-using systems for each site
	4.7	Identify potential energy efficient operations and maintenance parameters for key energy-using areas or systems
		>Based on established level of service
		>Examples include exercising / cleaning HVAC air dampers to prevent seizing / rusting; boiler tuning; etc
	4.8	Review current operating procedures and planned maintenance activities for key energy using systems from an energy efficiency perspective
		>Note practices that may already occur on an informal basis
		>Look beyond efficiently meeting demand and isolate operational, maintenance, and behavioral practices that control load demand
		>Consider operational and maintenance changes resulting from implementation of energy audit findings
		>Consider results from participation in the BC Hydro Continuous Optimization Program
Q3	4.9	Conduct studies aimed at the identification of common behavioral issues requiring targeted training for personnel
		>For example, noted instances of equipment remaining in manual override for unnecessarily extended periods

		>Leverage resources already planned to conduct evaluations of operational issues in conjunction with technical audits to be performed
	4.10	Modify current operating and maintenance practices as necessary to include energy efficiency issues
	4.11	Establish an opportunities register to log energy waste conditions that cannot be immediately corrected
		>Clarify process for communication of identified energy waste conditions
		>Communicate to employees the process for communicating energy waste conditions to operations personnel
		>Communicate to operations personnel expectations for correcting waste conditions
		>Use opportunities log as a source for planning the implementation of energy conservation and retrofit capital projects
	4.12	Create check-lists that personnel can use to monitor and control specific actions required for managing energy consumption
		>End-user checklists can focus on behavioral issues associated with the day-to-day equipment over which they have control
		>Maintenance personnel check-lists can focus on operational and maintenance protocol for large utility systems and equipment
	4.13	Support changes in operating and maintenance practices with training and regular communication
Q4	4.14	Review on-going performance based on updated instructions
		>Obtain input from maintenance personnel and adjust instructions as needed

Tasks List

5.0 E	Employ	ree Awareness / Training	
	Improve the effectiveness of executive management in monitoring the progress of the energy management initiative against planned expectations, in addressing obstacles and competing priorities, and in allocating resources as necessary.		
	5.1	Work with the executive energy sponsor and UNBC senior management to obtain clarity around the long-term strategy for the organization	
		>Ensure understanding of evolving organizational strategic plans	
		> Identify areas of current organization strategy with strong links to energy	
		>Define the linkages between the overall organizational strategy and energy conservation that can be the basis for energy reduction goals and activities	
	5.2	Ensure correlation and integration with the overall UNBC Master Plan	
		>Determine specifically how each of the key components of the SEMP tie to a particular and pertinent element of the UNBC Master Plan	
	5.3	Identify how achieving the stated long-term goal of the SEMP will contribute to the realization of the broader goals contained in the UNBC Master Plan	
	5.4	As necessary, adjust the multi-year SEMP to improve correlation with and contribution toward the UNBC Master Plan	
Q1	5.5	Formalize the executive energy sponsor and institutional requirement for regular reporting on the energy management program progress towards the stated annual targets and long-term goal of the multi-year SEMP	
	5.6	Consider utilizing current quarterly management meetings required by the BC Hydro Energy Manager Program to deliver the required institutional reporting and increase executive participation	
	5.7	Shift the focus of Energy Manager Quarterly Meetings from presentations made to BC Hydro to opportunities for direct engagement of UNBC executives	
		>Although BC Hydro in attendance, target the presentation content to UNBC executives vs BC Hydro	
Q2	5.8	Focus more attention on selectively inviting key executives from key operating areas to specific quarterly progress meetings	
		>Identify when participation from specific executive managers is key to address the priority agenda items tabled for a certain meeting and take time to invite them directly to that meeting	