

SENATE MEETING OPEN SESSION MINUTES

May 7, 2025 2:00PM – 3:30PM Zoom

Present: J. Bankole, C. Barreira, C. Brown, R. Camp II, D. Casperson, J. Crandall, B. Deo, K. Fredj, R. Fonda, T. Fyfe, M. Hawes, A. Jamwal, M. Gehloff (Vice Chair), M. Groulx, C. Hofsink, N. Hanlon, C. Ho Younghusband, T. Klassen-Ross, N. Koper, D. Litz, M. Mandy, S. MacKay, N. Neufeld, D. Nyce, B. Owen, A. Parent (Recording Secretary), M. Parkes, K. Rennie, D. Roberts, R. Somani (non-voting), K. Stathers, M. Tavares, F. Tong, T. Whitcombe, G. Wilson, S. Wilson, P. Wood-Adams,

<u>Regrets:</u> D. Brown, S. Dey, J. Hirt, M. Lolariya, A. Kranz, H. Kazemian, L. Lakhani, D. McIntosh, R. Noonan, G. Payne (Chair), P. Prince, R. Ramzan, K. Read (Secretary of Senate), R. Singh, P. Siakaluk, T. Watters

The Senate Meeting began at 2:02pm.

The Chair for the meeting was Vice-Chair Gehloff.

The Chair reported the following Acting Officers:

Associate Registrar Marlina Hawes will be the acting officer for the Registrar and Secretary of Senate.

Director of Indigenous Students Affair, Alana LaMalice will be the acting officer for the Chairperson NBCGSS.

The Chair reported one Faculty Senator vacancy for a Faculty Member from the Faculty of Indigenous Studies, Social Science and Humanities.

The Chair acknowledged that the meeting is taking place on traditional territory of the Lheidli T'enneh and welcomed other Senators to acknowledge the ancestral and traditional territories of their locations.

Acknowledgement of Territory

For thousands of years, Indigenous Peoples have walked gently on the diverse traditional territories where the University of Northern British Columbia community is grateful to live, work, learn, and play. We are committed to building and nurturing relationships with Indigenous peoples, we acknowledge their traditional lands.

1.0 S-202504.01

Approval of the Agenda

Tavares

That the agenda for April 23, 2025, Open Session of Senate be approved as presented.

Amendment

That the agenda for the May 7, 2025 Open Session of Senate use the April 23, 2025 Open Session of Senate agenda – presentations and motions not already considered only.

CARRIED as amended

2.0 Presentations:

Research Strategic Plan

Wood-Adams

Vice President Wood-Adams presented the Strategic Research Plan, developed with input from over 500 participants. The plan outlines UNBC's collective vision for research and innovation over the next five years, emphasizing core values like collaboration and interdisciplinarity, and setting priority actions to enhance research capacity, partnerships, and student engagement.

Global Engagement Plan

Beyer/Owen

The Global Engagement Strategic Plan is UNBC's first international strategy focused on enhancing student experience and success through international education, aligning with government mandates and institutional goals. Developed through broad community engagement, the plan emphasizes inclusivity, student mobility, and foundational values like equity, collaboration, and transparency.

3.0 Approval of the Minutes

S-202504.02

Approval of the Minutes

Casperson

That the Minutes for March 26, 2025, Open Session of Senate be approved as presented.

Correction noted to Senator Armaan Jamwal name.

CARRIED as amended

4.0 Committee Reports

4.1 Senate Committee on Academic Affairs

Owen

"For Approval" Items:

An Executive Summary of Motions for Business was included in the meeting package.

Motions .04 to .12 were moved as an omnibus motion.

S-202504.04

Change(s) to Program Requirements - Bachelor of Commerce, Common

Whitcombe

That on the recommendation of the Senate Committee on Academic Affairs, the change to make Comm 204-3, Entrepreneurship, a required course for all majors in the Commerce undergraduate degree (page 64-65 of the 2024-25 undergraduate academic calendar) be approved as proposed.

Effective Date: September 2025

Common Requirements for all Business Students

Students enrolling in any course required for a major in the Bachelor of Commerce degree must have completed all prerequisite courses with a minimum of C- or better. BComm students can only register in upper_division COMM courses when MATH 150-3 and MATH 152-3 are completed with a minimum grade of C- or better. In exceptional circumstances, the Chair of the School of Business may waive the above minimum grade requirements.

Lower-Division Requirements

100 Level

COMM 100-3* Introduction to Canadian Business
ECON 100-3 Microeconomics
ECON 101-3 Macroeconomics
FNST 100-3 The Aboriginal Peoples of Canada
MATH 150-3** Finite Mathematics for Business and Economics
or MATH 220-3 Linear Algebra
MATH 152-3** Calculus for Non-majors
or MATH 100-3 Calculus I

200 Level

COMM 200-3 Business Communication

S-202504.05

Change(s) to Program Requirements – Major in Accounting

Whitcombe

That on the recommendation of the Senate Committee on Academic Affairs, the change to make COMM 204-3, Entrepreneurship, a required course for Accounting majors in the Commerce undergraduate degree (page 65-66 of the 2024-25 academic undergraduate calendar) be approved as proposed; and that clarification be added to the Accounting major in the Commerce undergraduate degree (page 65 of the 2024-25 academic undergraduate calendar) to reflect the potential need to remain current with any additional requirements to achieve the CPA designation, be approved as proposed.:

Effective Date: September 2025

^{*}Students transferring with 30 or more credit hours of courses required for the Commerce degree are exempt from this requirement.

^{**}Students wishing to pursue additional Math courses as electives are advised to choose MATH 100-3 (Calculus I) and MATH 220-3 (Linear Algebra).

Major in Accounting

Every organization needs to keep track of its financial operations and financial position. Accounting is concerned with the measurement, provision, interpretation, and application of financial and economic information for the efficiency and evaluation of an organization's operations. The information provided by the accounting function is employed for effective planning, control, and decision making by management, and to report on the organization's financial operations to shareholders, debtholders, government, and other stakeholders of the firm. Graduates with an Accounting major are in demand by all sectors of the economy, including government, business, and public accounting firms. An Accounting major is recommended for students who wish to become a Chartered Professional Accountant (CPA). Students are encouraged to check with the professional designating body for any additional requirements that may be needed.

The minimum requirement for a Bachelor of Commerce with a major in Accounting is 120 credit hours.

Program Requirements

Note: Students enrolling in any course required for a major in the Bachelor of Commerce degree must have completed all prerequisite courses with a minimum of C- or better. In exceptional circumstances, the Program Chair may waive this requirement on a case-by-case basis.

Lower-Division Requirements

100 Level

COMM 100-3* Introduction to Canadian Business
ECON 100-3 Microeconomics
ECON 101-3 Macroeconomics
FNST 100-3 The Aboriginal Peoples of Canada
MATH 150-3** Finite Mathematics for Business and Economics
or MATH 220-3 Linear Algebra
MATH 152-3** Calculus for Non-majors
or MATH 100-3 Calculus I

S-202504.06

Change(s) to Program Requirements – Major in Finance

Whitcombe

That on the recommendation of the Senate Committee on Academic Affairs, the change to make Comm 204-3, Entrepreneurship, a required course for Finance majors in the Commerce undergraduate degree (page 66 – 67 of the 2024-25 academic undergraduate calendar) be approved as proposed.

Effective Date: September 2025

^{*}Students transferring with 30 or more credit hours of courses required for the <u>Bachelor</u> of Commerce degree are exempt from this requirement.

Major in Finance

Finance involves evaluating profitability and valuing real investments such as capital projects, as well as financial securities such as stocks, bonds, options, and futures. In addition to the study of sources of capital and financing decisions of the firm and individual investors, the Finance major also studies the management of financial institutions such as banks and trust companies. The tools of Finance are used by small and large firms, government, and individual investors. Instruction in Finance provides valuable information regarding financing and evaluating investment opportunities to students planning to enter into business for themselves. Government and firms employ Finance majors as financial analysts as well as in general management positions. In addition, the financial services industry is one of the fastest growing industries in Canada. Individuals interested in positions in the financial sector, or pursuing either the Chartered Financial Planner (CFP) or Chartered Financial Analyst (CFA) designations, or completing the Canadian Securities Course (CSC), should consider majoring in Finance.

The minimum requirement for a Bachelor of Commerce with a major in Finance is 120 credit hours.

Program Requirements

Note: Students enrolling in any course required for a major in the Bachelor of Commerce degree must have completed all prerequisite courses with a minimum of C- or better. In exceptional circumstances, the Program Chair may waive this requirement on a case-by-case basis.

Lower-Division Requirements

100 Level

COMM 100-3* Introduction to Canadian Business
ECON 100-3 Microeconomics
ECON 101-3 Macroeconomics
FNST 100-3 The Aboriginal Peoples of Canada
MATH 150-3** Finite Mathematics for Business and Economics
or MATH 220-3 Linear Algebra
MATH 152-3** Calculus for Non-majors
or MATH 100-3 Calculus I

S-202504.07

Change(s) to Program Requirements – Major in Human Resources Management

That on the recommendation of the Senate Committee on Academic Affairs, the change to make Comm 204-3, Entrepreneurship, a required course for Human Resources Management majors in the Commerce undergraduate degree (page 68 – 69 of the 2024-25 academic undergraduate calendar) be approved as proposed.

Effective Date: September 2025

Major in Human Resources Management

The success of any company or organization rests on the commitment and imagination of the people who are its members. Effective human resources management enables an organization to build success through people. By attracting qualified employees, developing their talents through training, fairly compensating them for their efforts, and protecting their health and safety, we create organizations that are productive, innovative, and satisfying to employees. We provide our students with the knowledge and skills to effectively manage the people in an organization. Human resources management is a professional field that is growing rapidly in Canada and there are many career opportunities within this exciting field.

The minimum requirement for completion of a Bachelor of Commerce with a major in Human Resources Management is 120 credit hours.

Program Requirements

Note: Students enrolling in any course required for a major in the Bachelor of Commerce degree must have completed all prerequisite courses with a minimum of C- or better. In exceptional circumstances, the Program Chair may waive this requirement on a case-by-case basis.

Lower-Division Requirements

100 Level

COMM 100-3* Introduction to Canadian Business
ECON 100-3 Microeconomics
ECON 101-3 Macroeconomics
FNST 100-3 The Aboriginal Peoples of Canada
MATH 150-3** Finite Mathematics for Business and Economics
or MATH 220-3 Linear Algebra
MATH 152-3** Calculus for Non-majors
or MATH 100-3 Calculus I

*Students transferring with 30 or more credit hours of courses required for the <u>Bachelor</u> <u>of Commerce</u> degree are exempt from this requirement.

**Students wishing to pursue additional Mmath courses as electives are advised to choose MATH 100-3 (Calculus I) and MATH 220-3 (Linear Algebra).

Students not having the appropriate prerequisites for any courses must consult with the Business Advisor.

200 Level

S-202504.08

Change(s) to Program Requirements – Major in International Business

Whitcombe

That on the recommendation of the Senate Committee on Academic Affairs, the change to make Comm 204-3, Entrepreneurship, a required course for International Business majors in the Commerce undergraduate degree (page 69 – 70 of the 2024-25 academic undergraduate calendar) be approved as proposed.

Effective Date: September 2025

Major in International Business

In recent years the importance of an international perspective for Business students has increased as a result of the increasing globalization of the economy. Globalization of the economy has emphasized the importance of an international perspective for Business students. The International Business major exposes students to the impact of the international environment on the functional areas of business management. In conjunction with courses in the International Studies program, the major in International Business allows students to focus on a country or region of the world, providing education in language, culture and business practice. All students, particularly those majoring in International Business are encouraged to take courses in International Business at institutions/universities abroad approved by the UNBC International Office in order to gain practical international exposure as part of their Business of Commerce program.

In order to gain practical international exposure, Bachelor of Commerce students, particularly those majoring in International Business, are encouraged to take courses in International Business at institutions or universities abroad that have been approved by the UNBC International Office. For more information on exchange opportunities refer to www.unbc.ca/international.

Graduates are suited to work in firms or government agencies involved in international operations.

The minimum requirement for a Bachelor of Commerce with a major in International Business is 120 credit hours.

Program Requirements

Note: Students enrolling in any course required for a major in the Bachelor of Commerce degree must have completed all prerequisite courses with a minimum of C- or better. In exceptional circumstances, the Program Chair may waive this requirement on a case-by-case basis.

Lower-Division Requirements

100 Level

S-202504.09

Change(s) to Program Requirements – Major in Management Information Systems Whitcombe

That on the recommendation of the Senate Committee on Academic Affairs, the change to make Comm 204-3, Entrepreneurship, a required course for Management Information Systems majors in the Commerce undergraduate degree (page 70 of the 2024-25 academic undergraduate calendar) be approved as proposed.

Effective Date: September 2025

Major in Management Information Systems

Management Information Systems is about using information systems to provide value to organizations. Students in this field have the opportunity to acquire the skills to use, analyze, and manage information systems to succeed in the business world. A major in Management Information Systems provides skills that include: designing information systems for businesses;, using data to find lucrative opportunities for firms;, and determining users' computing needs. People with these skills find opportunities in a diverse set of organizations from large government organizations to local companies. Concepts in Amanagement Information Systems are particularly important for those who have a passion for using technology to help organizations reach their goals.

The minimum requirement for a Bachelor of Commerce with a major in Management Information Systems is 120 credit hours.

Program Requirements

Note: Students enrolling in any course required for a major in the Bachelor of Commerce degree must have completed all prerequisite courses with a minimum of C- or better. In exceptional circumstances, the Program Chair may waive this requirement on a case-bycase basis.

Lower-Division Requirements

100 Level

COMM 100-3* Introduction to Canadian Business ECON 100-3 Microeconomics **ECON 101-3 Macroeconomics** FNST 100-3 The Aboriginal Peoples of Canada MATH 150-3** Finite Mathematics for Business and Economics or MATH 220-3 Linear Algebra MATH 152-3** Calculus for Non-majors or MATH 100-3 Calculus I

Students must ensure that all prerequisites are fulfilled prior to registering in any course. Students who do not have the appropriate prerequisites for any courses must consult with the Business Advisor.

200 Level

COMM 200-3 Business Communication

COMM 204-3 Entrepreneurship

COMM 210-3 Financial Accounting

COMM 211-3 Managerial Accounting

COMM 220-3 Financial Management I

COMM 230-3 Organizational Behaviour

<u>S-202504.10</u> Change(s) to Program Requirements – Major in Marketing

Whitcombe

That on the recommendation of the Senate Committee on Academic Affairs, the change to make Comm 204-3, Entrepreneurship, a required course for Marketing majors in the Commerce undergraduate degree (pages 70-71 of the 2024-25 academic undergraduate calendar) be approved as proposed.

Effective Date: September 2025

^{*}Students transferring with 30 or more credit hours of courses required for the Bachelor of Commerce degree are exempt from this requirement.

^{**}Students wishing to pursue additional Mmath courses as electives are advised to choose MATH 100-3 (Calculus I) and MATH 220-3 (Linear Algebra).

Major in Marketing

Marketing refers to the set of activities needed to find, build, and serve markets for products and services. Students of marketing will acquire analytical tools from economics, mathematics, statistics, and the social and behavioural sciences. A major in Marketing is useful for such positions as account representatives, brand managers, advertising executives, and market researchers. Marketing majors may find employment in the private sector, in non-profit organizations, and in government. Marketing concepts and principles are of particular importance to small businesses and new business ventures.

The minimum requirement for a Bachelor of Commerce with a major in Marketing is 120 credit hours.

Program Requirements

Note: Students enrolling in any course required for a major in the Bachelor of Commerce degree must have completed all prerequisite courses with a minimum of C- or better. In exceptional circumstances, the Program Chair may waive this requirement on a case-by-case basis.

Lower-Division Requirements

100 Level

COMM 100-3* Introduction to Canadian Business
ECON 100-3 Microeconomics
ECON 101-3 Macroeconomics
FNST 100-3 The Aboriginal Peoples of Canada
MATH 150-3** Finite Mathematics for Business and Economics
or MATH 220-3 Linear Algebra
MATH 152-3** Calculus for Non-majors
or MATH 100-3 Calculus I

Students not having the appropriate prerequisites for any courses must consult with the Business Advisor.

S-202504.11

New Course Approval – COMM 370-3 Sustainable Solutions; Current Issues and Case Studies Whitcombe

That on the recommendation of the Senate Committee on Academic Affairs, the new course COMM 370-3 Sustainable Solutions: Current Issues and Case Studies be approved as proposed.

Effective Date: January 2026

^{*}Students transferring with 30 or more credit hours of courses required for the <u>Bachelor of Commerce</u> degree are exempt from this requirement.

^{**}Students wishing to pursue additional <u>Mm</u>ath courses as electives are advised to choose MATH 100-3 (Calculus I) and MATH 220-3 (Linear Algebra).

1. Calendar Course Description:

This course explores environmental, social, and economic issues in organizations, and their solutions. Through applied case studies, students see how real-world sustainable solutions can be applied in various industries. These topics can include transitioning businesses towards low-carbon emissions, developing viable business plans for social enterprises, and encouraging mainstream adoption of green technology

2. Prerequisites with concurrency (taken prior or simultaneously): COMM 170-3 or permission from the program chair

S-202504.12

New Course Approval – COMM 470-3 Not-For-Profit Business Consulting

Whitcombe

That on the recommendation of the Senate Committee on Academic Affairs, the new course COMM 470-3 Not-For-Profit Business Consulting be approved as proposed

Effective Date: September 2025

CARRIED

1. Calendar Course Description:

This course provides students with the knowledge and opportunity to conduct business consulting work, specifically consulting work for not-for-profit organizations, helping them to implement their organizational strategies. Professional business consultants act as mentors in the course and students consult for real not-for-profit organizations in northern BC. Students conduct a consulting project, work with clients, and create a positive impact in the community.

2. Prerequisites with concurrency (taken prior or simultaneously): 60 credit hours or permission from the program chair

S-202504.13

Change(s) to Course Prerequisites – COMM 251-3 Introduction to Management Science Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the change to the course description for COMM 251-3 Introduction to Management Science, on page 212 of the 2024/2025 undergraduate calendar be approved as proposed.

Effective Date: September 2025

CARRIED

1. Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

COMM 251-3 Introduction to Management Science

This course is a study of analytical approaches in management science that assist managerial decision-making under conditions of both certainty and uncertainty. Attention is given to the formulation of quantitative models from a variety of areas. Topics include linear programming, transportation/assignment problems, integer programming, multicriteria decisions, dynamic programming, decision analysis, queuing theory, and simulation.

Prerequisite(s): MATH 150-3 or MATH 220-3, MATH 152-3 or MATH 100-3, and ECON 205-3; MATH 240-3 or STAT 240-3 may substitute for ECON 205-3 or STAT 240-3

<u>S-202504.14</u>

Change(s) to Course Prerequisites – COMM 320-3, Financial Management II

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the change of COMM 320-3, Financial Management II, from a course prerequisite for COMM 321-3, Investment and Security Analysis, to a course co-requisite for Comm 321-3 on page 213 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

1. Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

COMM 321-3 Investments and Security Analysis

The principles and techniques of investing in securities are discussed. Material covered includes sources and analysis of investment information, evaluation of risks and returns associated with various financial instruments including futures and options. <u>and</u> <u>Security</u> analysis including fundamental and technical analysis.

Pre-requisite with concurrency: COMM 320-3

S-202504.15

Change(s) to Course Number and Description – COMM 302-3 Entrepreneurship

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the change of COMM 302-3 Entrepreneurship, to COMM 204-3 Entrepreneurship and to remove COMM 240-3, Introduction to Marketing, as a course prerequisite on page 213 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

COMM 302204-3 Entrepreneurship

This course focuses on the processes and techniques required to convert ideas, inventions and innovations into profitable business undertakings, with a brief introduction to business fundamentals. Students have the opportunity to develop a new venture business plan.

Prerequisite(s): COMM 240-3 30 credit hours or permission of program Chair

An Executive Summary of Motions for Geography was included in the meeting package.

Motions .16 to .17 were moved as an omnibus motion

S-202504.16

Change(s) to Degree Requirements – Major in Public Administration and Community Development Nyce

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the Major in Public Administration and Community Development, on pages 139-142 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

5. Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

Major in Public Administration and Community Development

The Public Administration and Community Development (PACD) major gives students the skills required to function within a range of groups, organizations, and offices. Graduates are able to interact with appropriate professionals, receive their input and reports, and collate a wide range of information and material in service of their group/organization/office. Skills in analysis and synthesis are complemented by an ability to work cooperatively and effectively, and an ability to communicate clearly through written, oral, and graphic media.

The <u>Public Administration and Community Development PACD</u> major requires completion of 120 credit hours, 48 of which must be at the upper-division level. At the lower division, students must take the seven required courses and a minimum of one course from each of the seven categories. At the upper division, students must take the four required courses and a minimum of one course from each of the seven

categories. To complete the 120 credit hours, students must take 45 credit hours of electives, of which 15 credit hours must be at the upper division.

It is possible for students to organize their course choices (categories and electives) to achieve a "specialization" of coursework. An Area of Specialization requires eight courses (24 credit hours) in one of the following:

- Local Public Administration
- Aboriginal Community Development
- Planning

Program Requirements

Lower-Division Requirements

COMM 100-3 Introduction to Canadian Business
ECON 100-3 Microeconomics
ECON 101-3 Macroeconomics
ENPL 104-3 Introduction to Planning
FNST 100-3 The Aboriginal Peoples of Canada
GEOG 101-3 Planet Earth
POLS 100-3 Contemporary Political Issues

Select ONE course from each category below:

Community

FNST 217-3 Contemporary Challenges Facing Aboriginal Communities GEOG 206-3 Social Geography GEOG 209-3 Migration and Development

Public Administration

ECON 210-3 Introduction to Health Economics and Policy ENVS 230-3 Introduction to Environmental Policy NREM 209-3 The Practice of Conservation POLS 255-3 Introduction to Law in Canada SOCW 201-3 Introduction to Social Welfare

Governance

COMM 170-3	Fundamentals of Environmental, Social, and Governance Issues
ENVS 101-3	Introduction to Environmental Citizenship
HIST 257-3	Public Law in Canada
POLS 200-3	Canadian Government and Politics
POLS 257-3	Public Law in Canada

First Nations

FNST 200-3 Perspectives in First Nations Studies
FNST 249-3 Aboriginal Resource Planning
or ENPL 208-4 Land and Indigenous Reconciliation Studio
GEOG 224-3 World Regions: Inuit Nunangat
INTS 240-3 Contemporary Circumpolar North
NORS 101-3 Introduction to the Circumpolar North

Methods

ECON 205-3 Statistics for Business and the Social Sciences

ENPL 206-3 FNST 200-3 FNST 203-3 GEOG 204-3	Principles and Practices of Planning Planning Analysis and Techniques Perspectives in First Nations Studies Introduction to Traditional Ecological Knowledge Introduction to GIS Cartography and Geomatics
GEOG 204-3	Introduction to GIS

Economics

COMM 230-3	Organizational Behaviour
GEOG 202-3	Resources, Economies, and Sustainability
INTS 210-3	Globalizations
ORTM 200-3	Sustainable Outdoor Recreation and Tourism

ORTM 202-3 Ecotourism and Adventure Tourism

General

ANTH 102-3	Anthropology: A World of Discovery
ARTS 102-3	Research Writing
COMM 240-3	Introduction to Marketing
ECON 220-3	Global Economic Shifts
GEOG 200-3	British Columbia: People and Places
GEOG 225-3	Global Environmental Change
ORTM 100-3	Foundations of Outdoor Recreation and Tourism

Upper-Division Requirements

ENPL 313-3	Rural Community Economic Development (CED)
	Land Use and Development Studio
GEOG 424-3	Northern Communities
POLS 332-3	Community Development
or GE0	OG 332-3 Community Development
POLS 403-3	Social and Health Policy and Administration

Select ONE course from each category below:

Community

,	
COMM 302-3	Entrepreneurship
ENPL 301-3	Sustainable Communities: Structure and Sociology
ENPL 415-4	Sustainable and Inclusive Design Studio
ORTM 307-3	Land Relations and Communities in Recreation and Tourism
POLS 434-3	Resource Communities in Transition
SOCW 437-3	Social Work with Groups and Communities
SOCW 456-3	Indigenous Wellness: Individuals, Families, and Communities
SOCW 457-3	Individual and Community Wellness for Indigenous Peoples
	· · · · · · · · · · · · · · · · · · ·

Public Administration			
COMM 330-3	Human Resources Management		
ENPL 304-4	Community Engagement and Inclusion Studio		
ENPL 401-3	Environmental Law		
NREM 306-3	Society, Policy and Administration		
POLS 302-3	How Government Works		
POLS 344-3	Society, Policy and Administration of Natural Resources		
POLS 351-3	Local Services and Public Policy		
POLS 360-3	Local Government Finance		
SOCW 455-3	Indigenous Governance and Social Policy		

Governance ANTH 410-3 ENVS 326-3 FNST 350-3 GEOG 305-3 POLS 316-3 POLS 320-3 POLS 333-3 POLS 350-3 POLS 353-3	Theory of Nation and State Public Engagement for Sustainability Law and Indigenous Peoples Political Ecology: Environmental Knowledge and Decision-Making Municipal Government and Politics Canadian Politics and Policy Politics and Government of BC Law and Municipal Government Project Management in Local Government
First Nations ANTH 404-3 ENPL 409-4 FNST 416-3 GEOG 403-3 GEOG 426-3 HIST 303-3 HIST 390-3 INTS 340-3 NREM 303-3 POLS 415-3	Comparative Study of Indigenous Peoples of the World Indigenous Planning Studio Indigenous Issues in International Perspective Indigenous Geographies of Climate Resilience Geographies of Culture, Rights and Power British Columbia History of Indigenous Peoples of Canada Changing Arctic: Human and Environment Systems
ENPL 305-3 ENPL 319-3 ENVS 339-3 FNST 300-3	6) Ethnographic Field Methods Environmental Impact Assessment Social Research Methods
ECON 305-3 ECON 307-3 ECON 331-3 ECON 350-3 ENPL 404-3 ENVS 431-3 GEOG 401-3 INTS 421-3 INTS 425-3	Introduction to International Business Environmental Economics and Environmental Policy Northern BC in the Global Economy Forest Economics Managerial Economics Housing: From Concept to Construction Global Environmental Policy: Energy and Climate Tenure, Conflict, and Resource Geography The Political Economy of Natural Resource Extraction Sustainability Problem Solving Recreation and Tourism Impacts
COMM 340-3 COMM 342-3 COMM 346-3 ENVS 414-3	Business and Professional Ethics Marketing Communications Services Marketing Internet Marketing Environmental and Professional Ethics

FNST 451-3 Traditional Use Studies

or ANTH 451-3 Traditional Use Studies

FNST 498-(3-6) Special Topics in First Nations Studies

GEOG 200-3 British Columbia: People and Places

GEOG 307-3 Changing Arctic: Human and Environmental Systems

GEOG 308-3 Health Geography

GEOG 416-3 Mountains

GEOG 420-3 Environmental Justice

HIST 360-3 An Introduction to Environmental History POLS 327-3 Leadership and Ethics in Local Government

Areas of Specialization

It is possible for students to organize their course choices (areas and electives) to achieve an Area of Specialization of coursework. For the PACD major, completion of an <u>Area of sSpecialization</u> requires eight courses (24 credit hours) from one of the following:

- Local Public Administration
- Aboriginal Community Development
- Planning

Area of Specialization in Local Public Administration

Note: Students choosing this Area of Specialization should be aware that UNBC also offers a Local Government Administration Certificate through the Department of Political Science, as well as a First Nations Public Administration Certificate through the Department of First Nations Studies.

Lower-Division course choices

COMM 100-3 Introduction to Canadian Business

COMM 230-3 Organizational Behaviour

POLS 255-3 Introduction to Law in Canada

Upper-Division course choices

POLS 316-3	Municipal Government and Politics
POLS 320-3	Canadian Politics and Policy
POLS 327-3	Leadership and Ethics in Local Government
POLS 333-3	Politics and Government of BC
POLS 350-3	Law and Municipal Government
POLS 351-3	Local Services and Public Policy
POLS 360-3	Local Government Finance
POLS 403-3	Social and Health Policy and Administration

Area of Specialization in Aboriginal Community Development

Lower-Division course choices

FNST 200-3	Perspectives in First Nations Studies	
FNST 203-3	Introduction to Traditional Ecological Knowledge	
FNST 217-3	Contemporary Challenges Facing Aboriginal Communities	
FNST 249-3	Aboriginal Resource Planning	
or ENPL 208-4 Land and Indigenous Reconciliation Studio		

Upper-Division course choices

ANTH 404-3	Comparative Study of Indigenous Peoples of the World
COMM 302-3	Entrepreneurship
ENPL 409-4	Indigenous Planning Studio
FNST 300-3	Research Methods in First Nations Studies
FNST 304-3	Indigenous Environmental Philosophy
FNST 350-3	Law and Indigenous Peoples
FNST 416-3	Indigenous Issues in International Perspective
FNST 451-3	Traditional Use Studies
FNST 498-(3-6	6) Special Topics in First Nations Studies
GEOG 403-3	Indigenous Geographies of Climate Resilience
HIST 390-3	History of Indigenous People of Canada
NREM 303-3	Aboriginal Perspectives on Land and Resource Management
SOCW 455-3	Indigenous Governance and Social Policy
SOCW 457-3	Individual and Community Wellness for Indigenous Peoples

Area of Specialization in Planning

ENPL 104-3 Introduction to Planning

Note: The Area of Specialization in Planning does not lead to an accredited planning degree. The School of Environmental Planning and Sustainability offers a professional accredited Canadian Institute of Planner degree. Refer to the calendar for further information.

Required Courses

	muodo	olion to maining
ENPL 105-3	Princip	les and Practices of Planning
ENPL 301-3	Sustair	nable Communities: Structure and Sociology
ENPL 304-4		unity Engagement and Inclusion Studio
Four of the fo	llowing:	
ENPL	206-3	Planning Analysis and Techniques
ENPL	208-4	Land and Indigenous Reconciliation Studio
ENPL	305-3	Environmental Impact Assessment
ENPL	313-3	Rural Community Economic Development (CED)
ENPL	319-3	Social Research Methods
<u>ENPL</u>	320-4	Land Use and Development Studio
ENPL	401-3	Environmental Law
<u>ENPL</u>	404-3	Housing: From Concept to Construction
ENPL	409-4	Indigenous Planning Studio
ENVS	326-3	Public Engagement for Sustainability

Electives and Academic Breadth

Forty-five elective credits in any subject as necessary to ensure completion of a minimum of 120 credit hours (at least 15 of these elective credit hours must be at the 300 or 400 level) including any additional credits necessary to meet the Academic Breadth requirement of the University (see Academic Regulation on Academic Breadth). Electives at any level in any subject sufficient to ensure completion of a minimum of 120 credit hours including any additional credit hours necessary to meet the Academic Breadth requirement of the University (see Academic Regulation on Academic Breadth).

S-202504.17

New Course Approval – GEOG 213-3 Sii Aks Volcano

Nyce

That on the recommendation of the Senate Committee on Academic Affairs, the new course GEOG 213-3 Sii

Aks Volcano be approved as proposed **Effective Date**: September 2025

CARRIED

6. Calendar Course Description:

This course is a combined study of the physical volcanology and the Nisga'a Volcano Story focusing on the *Sii Aks* Volcano in the Nass Valley of British Columbia. It is an introduction to physical volcanology through a comprehensive examination of volcanic eruptions and their consequences. The main topics covered are Nisga'a history, accounts of the *Sii Aks* Volcano eruption described in Nisga'a history, the physical properties of magmas and lavas, volcanic landforms, eruption dynamics, and volcano monitoring and hazard assessment. The course runs for six days and includes a full day field trip excursion to the pyroclastic cone and lava flows.

10. Prerequisites with concurrency (taken prior or simultaneously): None

S-202504.18

Change(s) to Course Title – GEOG 211-3 Natural Hazards: Human and Environmental Dimensions Tayares

That on the recommendation of the Senate Committee on Academic Affairs, the change to the course title for GEOG 211-3 Natural Hazards: Human and Environmental Dimensions, on page 255 in the 2024/25 undergraduate PDF calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

GEOG 211-3 Natural Hazards: Human and Environmental Dimensions With a focus upon natural hazards, this course examines the relationship between human activity and the natural environments in which they occur. The course introduces students to the Earth's physical processes and explores why these processes create risks for people and settlements. Students identify which regions of the world are at greatest risk for a variety of natural hazard types, and how humans can mitigate the loss of life and property.

Preclusion(s): GEOG 100-3

S-202504.19

Change(s) to Course Title and Prerequisites – GEOG 311-3 Drainage Basin Geomorphology Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the change to the course prerequisites for GEOG 311-3 Drainage Basin Geomorphology, on page 257 in the 2024/25 undergraduate PDF calendar, be approved as proposed and the title of the course be changed from Drainage Basin Geomorphology to Watershed Geomorphology

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

GEOG 311-3 Drainage Basin <u>Watershed</u> <u>Geomorphology</u> This course focuses on hillslope and fluvial processes in drainage basins. Laboratory exercises introduce quantitative methods to understand patterns of sediment production, movement, and storage in mountain watersheds.

Prerequisite(s): GEOG 210-3, PHYS 100-4, and STAT 240-3, or permission of the instructor

S-202504.20

Change(s) to Course Description, Prerequisites and Preclusions – GEOG 405-3, Fluvial

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the description, prerequisites and preclusions for GEOG 405-3 (cross-listed with GEOG 605-3) on page 257 of the 2024/2025

undergraduate calendar (and page 129 of the 2024/2025 graduate calendar) be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

GEOG 405-3 Fluvial Geomorphology This course investigates river channel morphometry and landforms developed by running water and focuses on the physical processes and techniques of measurement. Weekend field trips are required. Lectures, field trips, and laboratory sessions provide skills and methods to assess the work of rivers on the landscape.

Prerequisite(s): GEOG 210-3 GEOG 311-3 or permission of the instructor

Preclusion(s): GEOG 605-3

GEOG 605-3 Fluvial Geomorphology This <u>advanced</u> course investigates river channel morphometry and landforms developed by running water and focuses on the physical processes and techniques of measurement. Weekend field trips are required. <u>Lectures, field trips, and laboratory sessions provide skills and methods to assess the work of rivers on the landscape.</u>

Prerequisite(s): Permission of the instructor

Preclusion(s): GEOG 405-3

<u>S-202504.21</u>

Change(s) to Course Title, Description, and Prerequisites – GEOG 411-3 Quaternary and Surficial Geology Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the course title, prerequisites, and description for GEOG 411-3 (cross-listed with GEOG 611-3) on page 257 of the 2024/2025 undergraduate calendar (and page 129 of the 2024/2025 graduate calendar) be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

GEOG 411-3 <u>Glacial Geology</u> <u>Quaternary and Surficial Geology</u> This course examines geomorphic processes and environmental change in British Columbia during the last two million years of Earth's history. <u>Through lectures, field trips, and laboratory exercises, students learn the Quaternary history of North America, the tools and techniques used in <u>surficial geology research, and basic field skills.</u></u>

Prerequisite(s): GEOG 210-3 GEOG 311-3 or permission of the instructor

Preclusion(s): GEOG 611-3

GEOG 611-3 <u>Glacial Geology</u> <u>Quaternary and Surficial Geology</u> This <u>advanced</u> course examines geomorphic processes and environmental change in British Columbia during the last two million years of Earth's history. <u>Through lectures</u>, <u>field trips</u>, <u>and laboratory exercises</u>, <u>students learn the Quaternary history of North America</u>, the tools and <u>techniques used in surficial geology research</u>, and <u>basic field skills</u>.

Prerequisite(s): Permission of the instructor

Preclusion(s): GEOG 411-3

S-202504.22

Change(s) to Program Requirements – MSc in Health Sciences

Fonda

That on the recommendation of the Senate Committee on Academic Affairs, the change(s) to the requirements of the MSc in Health Sciences on pages 68 and 69 of the 2024/2025 Graduate Academic Calendar be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

Health Sciences (MSc Program)

For potential supervisors, please visit our website: www.unbc.ca/health-sciences

The MSc in Health Science offers a combined student-centred and community-oriented approach. The MSc strengthens students' capacity to progress their research interests and equips a new generation of researchers to understand and respond to contemporary health challenges, especially those faced by northern, rural, remote, and Indigenous communities. The interdisciplinary program provides opportunities for those interested in health within a changing health system to explore and research and to benefit from the diverse health research strengths in the School of Health Sciences and across UNBC.

Students pursue health research approaches that fit with their interests, learning from a range of research expertise spanning, but not limited to, biomedical, epidemiological, community health, and ecohealth approaches. Our students also benefit from active research partnerships across and beyond the university that create opportunities for applied and community-oriented research, with direct experience working with and learning from a range of community partners.

The research-based Master's degree equips students for a thriving career in health research (including applications for PhD programs), and is well suited for established health professionals seeking a research-oriented program that will builds on existing practice and skills.

Admission

Application deadlines can be found online at www.unbc.ca/admissions/graduate.

The Health Sciences MSc program accepts students for the September Semester.

In addition to meeting the admission application requirements outlined in *General Admission* of the Graduate Admissions and Regulations, all applicants to the Health Sciences MSc program are required to submit a Criminal Record Check search prior to the first day of classes in their entry semester.

Domestic applicants must supply a Criminal Record Check search result after receiving an offer of admission and before the first day of classes; the search result is not required with the application. International applicants must submit a Criminal Record Check search result completed by their local police authority upon application, and will are also be required to submit a British Columbia Criminal Record Check if offered admission. The Office of the Registrar will provides instructions on how to complete a British Columbia Criminal Record Check to domestic and international applicants who have accepted offers of admission. on how to complete a British Columbia Criminal Record Check.

Prerequisites

Applicants must have completed an undergraduate course in statistics or biostatistics. In addition to courses taught in departments of Mathematics or Statistics, courses that are included in social sciences programs such as psychology or sociology, and in the curricula of undergraduate health professions, meet this requirement.

Applicants must have completed an undergraduate course in research methodology. Appropriate courses include those found in social science undergraduate programs, and in the curricula of undergraduate health professions.

Requirements

Students must complete 32 credit hours, which include Six five courses (18 14 credit hours) at the graduate level, a Health Research Seminar Series (1 credit), 6 credit hours of elective/additional courses, and a thesis (12 credit hours) are required.

The following courses must be completed by ALL students as part of their program.

EDUC 602-4 Quantitative Research Design and Data Analysis

or PSYC 600-4 Univariate Statistics [PSYC 600-4 will now move to the bottom of this list] or another graduate-level statistics course approved by the Program chosen in consultation with the supervisory committee, and approved by the Chair of the School of Health Sciences

HHSC 601-3 Principles of Epidemiology

HHSC 700-3 Advanced Techniques in Epidemiology

or HHSC 703-3 Qualitative Research Approaches in Health and Human Sciences

or a course as chosen in consultation with the supervisory committee, and approved by the Chair of <u>the</u> School of Health Sciences

HHSC 795-3 Graduate Seminar in Health Sciences

HHSC 796-1 Health Research Seminar Series

Additional Course Requirements

Students must choose Ttwo courses (6 credit hours), chosen in consultation with the supervisor.

Examples of courses taken by Health Sciences MSc students are:

BCMB 702-3 Chemical Biology Theory and Techniques

BIOL 625-3 Applied Genetics and Biotechnology

DISM 609-3 Professional Ethics in Health Care Management

ECON 610-3 Health Economics

HHSC 602-3 Organization and Financing of Canadian Health Care

HHSC 603-3 Community Research Methods

HHSC 606-3 Health Promotion

NURS 604-3 The Healing and Well-being of Indigenous Peoples

NURS 701-6 Advanced Clinical Practice Nursing

POLS 603-3 Social and Health Policy in the Context of Health and Health Care

PSYC 605-4 Multivariate Statistics

PSYC 609-3 Health Psychology

SOCW 610-3 Wellness: Alternate Approaches

Other courses may be substituted or added with the approval of the student's supervisory committee.

Thesis

The thesis (HHSC 790-12) shall be is assigned 12 credit hours.

Transfer Credit

A maximum of two courses (6 credit hours) completed with at least a B standing at a recognized University may be transferred with the approval of the advisor and the Chair of the School of Health Sciences.

S-202504.23

Course Reactivation – HHSC 110-3 Basic Microbiology

Fonda

That on the recommendation of the Senate Committee on Academic Affairs, HHSC 110-3 Basic Microbiology be re-activated with the same course description as when it was parked.

Effective Date: September 2025

CARRIED

HHSC 110-3 Basic Microbiology

This course Ppresents the basic principles of microbiology with an emphasis on the relevance of these principles to human health. A survey of the major types of microorganisms and a discussion on how they are classified and identified is addressed. An introduction to virology and bacterial metabolism, including environmental factors which affect microbial growth and survival, is presented. A laboratory component is included.

Prerequisite(s): Biology 12 and Chemistry 11

An Executive Summary of the Motions for International Studies was included in the meeting package.

Motions .24 to .26 and motions. .31-.38 were moved as an omnibus motion

S-202504.24

Change(s) to Program Requirements – Global and International Studies

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the Global and

International Studies (BA Program), on pages 148 and 149 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

S-202504.26

Change(s) to Program Requirements – Joint Major in Global and International Studies and Political Science Tayares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the Joint Major in Global and International Studies and Political Science (BA), on page 149 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

Joint Major in Global and International Studies and Political Science (BA)

The minimum requirement for completion of a Bachelor of Arts with a joint major in Global and International Studies and Political Science is 120 credit hours.

Lower-Division Requirement

ECON 100-3 Microeconomics

ECON 101-3 Macroeconomics

ECON 205-3 Statistics for Business and the Social Sciences or STAT

240-3 Basic Statistics

INTS 100-3 Introduction to Global Studies INTS 210-3

Globalizations

POLS 100-3 Contemporary Political Issues

POLS 200-3 Canadian Government and Politics

POLS 202-3 Canada in Comparative Perspective

POLS 230-3 International Relations

POLS 270-3 Political Philosophy: Antiquity to Early Modernity

Upper-Division Requirement

INTS 310-3 Origins and Evolution of Our Globalizing World

INTS 320-3 The Global and the Everyday

INTS 490-3 Global Capstone

POLS 303-3 Democracy and Democratization

POLS 320-3 Canadian Politics and Policy

POLS 370-3 Political Philosophy: Early Modernity to Post-Modernity

One of the following:

POLS 305-3	American Politics and Society POLS
309-3	Chinese Politics and Society POLS
311-3	Russian Politics and Society POLS
314-3	European Politics and Society
POLS 315-3	Contemporary Issues in the Circumpolar World
POLS 328-3	African Politics and Society
POLS 380-3	Law and Indigenous Peoples

One of the following:

POLS 414-3	Comparative Federalism
POLS 415-3	Comparative Northern Development
POLS 480-3	Law and Politics in the Arctic
POLS 416-3	Gender and Politics

Nine An additional 9 credit hours of upper division Global and International Studies (INTS) courses.

Six An additional 6 credit hours of 400-level Political Science (POLS) courses.

Six An additional 6 credit hours of 300- or 400-level Global and International Studies (INTS) or Political Science (POLS) courses.

Language and Regional Studies Requirement

One of the following:

GEOG 220-3	World Regions: Latin America and the Caribbean HIST 281-
	Republican Latin America
INTS 208 -3	Japanese Culture and Society
INTS 240-3	Contemporary Circumpolar North
INTS 328-3	African Politics and Society

Twelve A minimum of 6 credit hours of Global and International Studies (INTS) language courses in one language. At least 6 credit hours must be in one language.

Elective and Academic Breadth

Electives <u>credit hours</u> at any level in any subject sufficient <u>must be taken as necessary</u> to ensure completion of a minimum of 120 credit hours including any additional credit hours necessary to meet the Academic Breadth requirement of the University (see Academic Regulation on *Academic Breadth*).

S-202504.27

Course Deletion – INST 302-3 Canadian Foreign Policy

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the deletion of INTS 302-3 Canadian Foreign Policy, on page 267 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective date: September 2025.

CARRIED

S-202504.28

Course Deletion - INTS 310-3 Origins and Evolutions of Our Globalizing World

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the deletion of INTS 310-3 Origins and Evolutions of Our Globalizing World, on page 267 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

S-202504.29

Course Deletion – INTS 420-3 International Regimes

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the deletion of INTS 420-3 International Regimes, on page 269 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

S-202504.30

Course Deletion - INTS 620-3 International Regimes

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the deletion of INTS 620-3 International Regimes, on page 136 of the 2024/2025 graduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

S-202504.31

New Course Approval – INTS 218-3, Introduction to Folklore and Cultural Heritage

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the new course INTS 218-3, Introduction to Folklore and Cultural Heritage be approved as proposed.

Effective Date: September 2025

CARRIED

Calendar Course Description:

This course is designed for students who have an interest in cultures. It develops student research and communication skills by examining policies and best practices in conservation, cultural heritage, folklore research methods, and cultural and linguistic safeguarding. This course may have a field trip or experiential-learning component.

Prerequisites (taken prior): None

S-202504.32

New Course Approval - INTS 320-3, The Global and the Everyday

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the new course INTS 320-3, The Global and the Everyday, be approved as proposed.

Effective Date: January 2026

CARRIED

Calendar Course Description:

The global and the everyday are connected in a multitude of ways. This course explores the ways in which global processes and practices manifest in the everyday and the way in which the everyday may influence the global. Sites of the everyday may include popular cultures, fashion, climate migration, gendered violence, and everyday objects. **Prerequisites (taken prior):** INTS 100-3 and INTS 210-3 or permission of the instructor

S-202504.33

New Course Approval – INTS 324-3 Gender and Global Crisis

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the new course INTS 324-3 Gender and Global Crisis be approved as proposed.

Effective Date: September 2025

CARRIED

Calendar Course Description:

This course examines contemporary issues concerning gender and global crises in the context of global and international studies. It aims to provide gender and intersectional perspectives to help students understand global crises such as disasters, emergencies, violence, and conflicts.

Prerequisites (taken prior): INTS 100-3 and INTS 210-3 or permission of the instructor

Preclusions: WMST 324-3 Gender and Global Crisis

S-202504.34

New Course Approval – INTS 328-3 African Politics and Society

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the new course INTS 328-3 African Politics and Society, be approved as proposed.

Effective Date: September 2026

CARRIED

Calendar Course Description:

This course introduces students to a range of political, economic, and social issues in Africa, focusing on themes such as historical dynamics and processes, anti-colonial and decolonization movements, post- colonial politics, environmental politics, regional relations and institutions, international roles and relations, and contemporary social movements and social change.

Prerequisites (taken prior): INTS 100-3 and INTS 210-3 or permission of the instructor

Preclusions: POLS 328-3 African Politics and Society

S-202504.35

New Course Approval – INTS 412–3, Critical Perspectives on Climate Change and Security

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the new course INTS 412–3, Critical Perspectives on Climate Change and Security, be approved as proposed.

Effective Date: January 2026

CARRIED

This course examines the relationships between climate change and (in)security, drawing on critical, multidisciplinary theoretical and methodological perspectives. Considering (in)security in broad terms, from violent conflict to displacement to everyday experiences, topics include definitions of (in)security, historical and structural roots of climate-related vulnerabilities and insecurities, responses to climate- related risks and insecurities, and possible climate and security futures, considering dynamics of climate change and (in)security at local, national, regional, international, and global scales.

Prerequisites (taken prior): INTS 100-3 and INTS 210-3 or permission of the instructor

Preclusions: INTS 612 - Critical Perspectives on Climate Change

S-202504.36

New Course Approval – INTS 612-3, Critical Perspectives on Climate Change and Security

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the new course INTS 612-3, Critical Perspectives on Climate Change and Security, be approved as proposed.

Effective Date: January 2026

CARRIED

This advanced course examines the relationships between climate change and (in)security, drawing on critical, multidisciplinary theoretical and methodological perspectives. Considering (in)security in broad terms, from violent conflict to displacement to everyday experiences, topics include definitions of (in)security, historical and structural roots of climate-related vulnerabilities and insecurities, responses to climate-related risks and insecurities, and possible climate and security futures, considering dynamics of climate change and (in)security at local, national, regional, international, and global scales.

Preclusions: INTS 412-3 Critical Perspectives on Climate Change and Security

S-202504.37

New Course Approval – INTS 414-3, Gender, Peace and Security

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the new course INTS 414-3, Gender, Peace and Security, be approved as proposed.

Effective Date: September 2025

CARRIED

This course critically examines contemporary issues of gender, peace, and security (GPS) and unpacks complexities of the GPS agenda in Global North and Global South settings. It equips students with a critical understanding of GPS theories, debates, and perspectives and enables them to use this knowledge in their projects and everyday practices. **Prerequisites (taken prior):** INTS 100-3 and INTS 210-3 or permission of the instructor

- INTS 614 Gender, Peace and Security
 - WMST 414 Gender, Peace and Security

GNDR 614 - Gender, Peace and Security

S-202504.38

New Course Approval – INTS 614-3, Gender, Peace and Security

Tavares

Preclusions:

That on the recommendation of the Senate Committee on Academic Affairs, the new course INTS 614-3, Gender, Peace and Security be approved as proposed.

Effective Date: September 2025

CARRIED

This advanced course critically examines contemporary issues of gender, peace, and security (GPS) and unpacks complexities of the GPS agenda in Global North and Global South settings. It equips students with a critical

understanding of GPS theories, debates, and perspectives and enables them to use this knowledge in their projects and everyday practices.

Preclusions:

- INTS 414 Gender, Peace and Security
- WMST 414 Gender, Peace and Security
- GNDR 614 Gender, Peace and Security

An Executive Summary of Motions for Political Science was included in the meeting package.

S-202504.39

Course Deletion – POLS 422 (3-6) Ethnographic Research Project

That on the recommendation of the Senate Committee on Academic Affairs, the deletion of POLS 422 (3-6) Ethnographic Research Project, on page 293 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

S-202504.40

Course Deletion – POLS 480-3 Law and Politics in the Arctic

That on the recommendation of the Senate Committee on Academic Affairs, the deletion of POLS 480-3 Law and Politics in the Arctic, on page 293 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

S-202504.41

Course Deletion - POLS 680-3 Law and Politics in the Arctic

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the deletion of POLS 680-3 Law and Politics in the Arctic, on page 148 of the 2024/2025 graduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Motions .42 to .44 were moved as an omnibus motion.

S-202504.42

New Course Approval – POLS 328-3 African Politics and Society

That on the recommendation of the Senate Committee on Academic Affairs, the new course POLS 328-3 African Politics and Society, be approved as proposed.

Effective Date: September 2026

CARRIED

This course introduces students to a range of political, economic, and social issues in Africa, focusing on themes such as historical dynamics and processes, anti-colonial and decolonization movements, post- colonial politics, environmental politics, regional relations and institutions, international roles and relations, and contemporary social movements and social change.

Prerequisites (taken prior): INTS 100-3 and INTS 210-3 or permission of the instructor

Preclusions: INTS 328-3

<u>S-202504.43</u> New Course Approval – POLS 425-3, The Politics of Polarization

That on the recommendation of the Senate Committee on Academic Affairs, the new course POLS 425-3, The Politics of Polarization, be approved as proposed.

Effective Date: September 2026

This seminar examines political polarization, understood as extremes in opinions and/or the erosion of a more moderate political centre, and its impact(s) on power relations ranging from citizen interactions to domestic and international politics. We explore how polarization develops and how it shapes political identities, discourses, and ways of thinking and acting. We also spend a significant amount of time considering how polarization intersects with developments in media, information technology, and artificial intelligence.

Preclusions: POLS 625-3

S-202504.44

New Course Approval – POLS 625-3, The Politics of Polarization

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, t the new course POLS 625-3, The Politics of Polarization, be approved as proposed.

Effective Date: September 2026

CARRIED

This advanced seminar examines political polarization, understood as extremes in opinions and/or the erosion of a more moderate political centre, and its impact(s) on power relations ranging from citizen interactions to domestic and international politics. We explore how polarization develops and how it shapes political identities, discourses, and ways of thinking and acting. We also spend a significant amount of time considering how polarization intersects with developments in media, information technology, and artificial intelligence.

Preclusions: POLS 425-3

Motions .45 to .47 were moved as an omnibus motion.

S-202504.45

New Course Approval – WMST 324-3 Gender and Global Crisis

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the new course WMST 324-3 Gender and Global Crisis be approved as proposed.

Effective Date: September 2025

CARRIED

This course examines contemporary issues concerning gender and global crises in the context of global and international studies. It aims to prepare students for an understanding of global crises such as disasters, emergencies, violence, and conflicts through gender and intersectional perspectives.

Prerequisites (taken prior): WMST 100-3 and INTS 210-3, or permission of the instructor

Preclusions: INTS 324-3 Gender and Global Crisis

S-202504.46

New Course Approval – WMST 414-3 Gender, Peace, and Security

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the new course WMST 414-3 Gender, Peace, and Security be approved as proposed.

Effective Date: September 2025

CARRIED

This course critically examines contemporary issues of gender, peace, and security (GPS) and unpacks complexities of the GPS agenda in Global North and Global South settings. It equips students with a critical understanding of GPS theories, debates, and perspectives and enables them to use this knowledge in their projects and everyday practices.

Prerequisites (taken prior): WMST 100-3 and INTS 210-3, or permission of the instructor **Preclusions:**

- INTS 414 Gender, Peace and Security
- INTS 614 Gender, Peace and Security
- GNDR 614 Gender, Peace and Security

S-202504.47

New Course Approval - GNDR 614-3 Gender, Peace, and Security

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the new course GNDR 614-3 Gender, Peace, and Security be approved as proposed.

Effective Date: September 2025

CARRIED

This advanced course critically examines contemporary issues of gender, peace, and security (GPS) and unpacks complexities of the GPS agenda in Global North and Global South settings. It equips students with a critical understanding of GPS theories, debates, and perspectives, and enables them to use this knowledge in their projects and everyday practices.

Preclusions:

- INTS 414 Gender, Peace and Security
- WMST 414 Gender, Peace and Security

INTS 614 Gender, Peace and Security

An Executive Summary of Motions for Computer Science was included in the meeting package.

Motions .48 to .52 were moved as an omnibus motion.

S-202504.48

Change(s) to Program Requirements—BSc Major Computer Science (for Senate Regular Agenda) Fredi

That on the recommendation of the Senate Committee on Academic Affairs, the change(s) to the BSc Major Computer Science on page 78-79 of the 2024/2025 undergraduate calendar, be approved as proposed. **Effective Date:** September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

Computer Science (BSc Program)

Shahadat Hossain, Professor and Chair Liang Chen, Professor Waqar Haque, Professor David Casperson, Associate Professor Fan Jiang, Associate Professor Andreas Hirt, Assistant Professor Shruti Chandra, Assistant Professor Sajal Saha, Assistant Professor Allan Kranz, Senior Lab Instructor

Website: www.unbc.ca/computer-science

The Computer Science program gives students a thorough exposure to basic areas like computer architecture, programming languages and methodology, algorithms and data structures, systems programming, operating systems and networking, knowledge-based and database systems, software engineering, and theory. The student will Students develop the advanced practical computing and problem_solving skills required for professional work in modern industry, based on a strong conceptual foundation and on insights into the nature of this rapidly changing field. Each student will uses advanced development tools, and will be are encouraged to approach problem-solving from a multidisciplinary point of view. The program emphasizes direct co-operation with industry.

Major in Computer Science

A major in Computer Science requires at least 20 Computer Science courses and at least 61 credit hours in Computer Science, at least 27 credit hours of which must be upper-division courses, and of those upper-division credit hours, at least 12 must be taken at the 400 level. MATH 335-3 and STAT 371-3 can count towards this requirement.

The following course may not be used for credit towards a Computer Science major or joint major:

The minimum requirement for completion of a Bachelor of Science with a major in Computer Science is 120 credit hours.

Program Requirements

*Note: Unless otherwise specified, students enrolling in any Computer Science or Mathematics course with prerequisites are required to have completed all prerequisite courses for that course with a C- or better, or have permission to enroll from the Program Chair.

Lower-Division Requirement

100 Level CPSC 100-4 Computer Programming I CPSC 101-4 Computer Programming II CPSC 141-3 Discrete Computational Mathematics ENGL 170-3 Writing and Communication Skills or ENGL 270-3 Expository Writing

MATH 100-3 Calculus I

*Note: MATH 101-3 Calculus II is strongly recommended.

200 Level

DIOL 400 0

Algorithm Analysis and Development
Introduction to Concurrent and Distributed Programming
Introduction to Database Systems
Introduction to Logic Design
Computer Organization and Architecture
Mathematical Topics for Computer Science
Ethics in Computing Science
Data Structures I
Linear Algebra

General Science Requirement

Students must take two courses from the following list of science courses. It is recommended that computer science majors take PHYS 110-4 and PHYS 111-4. However, students may take any two courses from the following list, according to their interests, to fulfill the general science requirement:

BIOL 103-3	Introductory Biology I
BIOL 104-3	Introductory Biology II
CHEM 100-3	General Chemistry I
CHEM 101-3	General Chemistry II
ENVS 101-3	Introduction to Environmental Citizenship
GEOG 204-3	Introduction to GIS
GEOG 205-3	Cartography and Geomatics
GEOG 210-3	Introduction to Earth Science
PHYS 100-4	Physics for Life Sciences I
PHYS 101-4	Physics for Life Sciences II
PHYS 110-4	Introductory Physics I: Mechanics
PHYS 111-4	Introductory Physics II: Waves and Electricity
PSYC 101-3	Introduction to Psychology I

latas dueta a Dista au I

*Note: In some special cases other science courses approved by the Chair of Computer Science may be used to satisfy this requirement.

Upper-Division Requirement

Computer Science Breadth

CPSC 300-3	Software Engineering I
CPSC 320-3	Programming Languages
CPSC 321-3	Operating Systems
CPSC 324-3	Introduction to Database Systems
CPSC 340-3	Theory of Computation
CPSC 344-3	Data Communications and Networking
or CPSC 44	44-3 Computer Networks

*Note: STAT 371-3 Probability and Statistics for Scientists and Engineers is strongly recommended.

400 Level

At least 12 credit hours of Computer Science courses must be taken at the 400 level, and at least nine of these, at least 9 credit hours must be outside the seminar course, project course, (other than CPSC 400-3), research course, or special topics course category.

Alternate courses may be substituted for the above with the written permission of the Program Chair.

Subject Requirement

Six An additional 9 additional credit hours chosen from the following:

Computer Science at any level

MATH 335-3 Introduction to Numerical Methods

STAT 371-3 Probability and Statistics for Scientists and Engineers

Elective and Academic Breadth

Elective credit hours <u>must be taken</u> as necessary to ensure completion of a minimum of 120 credit hours including any additional credit hours necessary to meet the Academic Breadth requirement of the University (see Academic Regulation on *Academic Breadth*). A total of 45 credit hours in upper-division (300 and 400 level) courses from any discipline are required for graduation.

S-202504.49

Change(s) to Program Requirements– the BSc Joint Major in Chemistry and Computer Science Fredj

That on the recommendation of the Senate Committee on Academic Affairs, the change(s) to the BSc Joint Major in Chemistry and Computer Science on page 74-75 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

Joint Major in Chemistry and Computer Science (BSc)

The minimum requirement for completion of a Bachelor of Science with a Joint Major in Chemistry and Computer Science is 126 credit hours.

MATH 150-3 (Finite Mathematics for Business and Economics) may not be used for credit towards any Mathematics or Computer Science major or joint major.

Program Requirements

Literacy Requirement

One of the following:

ENGL 170-3 Writing and Communication Skills ENGL

270-3 Expository Writing

Lower-Division Requirement

CHEM 100-3 General Chemistry I CHEM 101-3 General Chemistry II CHEM 120-1 General Chemistry Lab I CHEM 121-1 General Chemistry Lab II CHEM 200-3 Physical Chemistry I CHEM 201-3 Organic Chemistry I CHEM 202-3 Inorganic Chemistry I CHEM 203-3 Organic Chemistry II CHEM 210-3 Analytical Chemistry I CPSC 100-4 Computer Programming I CPSC 101-4 Computer Programming II CPSC 141-3 Discrete Computational Mathematics CPSC 200 - 3Algorithm Analysis and Development CPSC 224-3 Introduction to Database Systems CPSC 230-4 Introduction to Logic Design CPSC 231-4 Computer Organization and Architecture CPSC 242-3 Mathematical Topics for Computer Science CPSC 281-3 Data Structures I MATH 100-3 Calculus I MATH 101-3 Calculus II MATH 220-3 Linear Algebra

An additional 3 credit hours of Computer Science at the 200 level or higher

Upper-Division Requirement

Chemistry

CHEM 300-3 Physical Chemistry II

or CHEM 305-3 Physical Chemistry III CHEM 310-3 Analytical Chemistry II CHEM

320-3 Inorganic Chemistry II
or CHEM 321-3 Inorganic Chemistry III

A minimum of Fifteen 15 credit hours of 300- or 400-level Chemistry*

*Up to 6 credit hours from BCMB 306-3, BCMB 340-3, BCMB 401-3, BCMB 402-3, BCMB 403-3, or BCMB 405-3 may be used to satisfy these requirements.

Computer Science

Two of the following:

CPSC 300-3 Software Engineering

CPSC 320-3 Programming Languages

CPSC 321-3 Operating Systems

CPSC 340-3 Theory of Computation

CPSC 370-3 Functional and Logic Programming

Six A minimum of 9 credit hours of 300- or 400-level Computer Science*; and

Six 6 credit hours of 400-level Computer Science (excluding the seminar, project, and special topics courses).

*Between the two disciplines, a minimum of 15 credit hours at the 400 level must be completed. One of the

following:

MATH 335-3 Introduction to Numerical Methods STAT 371-3 Probability and Statistics for Scientists and Engineers

Elective and Academic Breadth

Elective credit hours <u>must be taken</u> as necessary to ensure completion of a minimum of 126 credit hours including any additional credit hours necessary to meet the Academic Breadth requirement of the University (see Academic Regulation on *Academic Breadth*)

S-202504.50

Change(s) to Program Requirements—Joint Major in Computer Science/Mathematics

Fredi

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the Joint Major in Computer Science/Mathematics on page 79-80 of the 2024/25 undergraduate calendar be approved as proposed.

Shahadat Hossain

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

Joint Major in Computer Science and Mathematics (BSc)

The minimum requirement for completion of a Bachelor of Science with a Joint Major in Computer Science and Mathematics is 124 credit hours.

MATH 150-3 (Finite Mathematics for Business and Economics) may not be used for credit towards any Mathematics or Computer Science major or joint major.

Program Requirements

Literacy Requirement

One of the following:

ENGL 170-3 Writing and Communication Skills ENGL 270-3 Expository Writing

Lower-Division Requirement

CPSC 100-4 Computer Programming I CPSC 101-4

Computer Programming II

CPSC 141-3 Discrete Computational Mathematics

CPSC 200-3 Algorithm Analysis and Development

CPSC 224-3 Introduction to Database Systems

CPSC 230-4 Introduction to Logic Design

CPSC 231-4 Computer Organization and Architecture

CPSC 242-3 Mathematical Topics for Computer Science

CPSC 281-3 Data Structures I

MATH 100-3 Calculus I MATH 101-3

Calculus II

MATH 202-3 Multivariable Calculus I MATH

204-3 Multivariable Calculus II MATH 220-3

Linear Algebra

MATH 224-3 Foundations of Modern Mathematics

MATH 230-3 Ordinary Differential Equations and Boundary Value Problems

General Science Requirement

Two of the following:

BIOL 103-3 Introductory Biology I and BIOL 123-1 Introductory Biology I Laboratory

BIOL 104-3 Introductory Biology II

and BIOL 124-1 Introductory Biology II Laboratory

CHEM 100-3 General Chemistry I and CHEM 120-1 General Chemistry Lab I

CHEM 101-3 General Chemistry II and CHEM 121-1 General Chemistry Lab II

PHYS 100-4 Physics for Life Sciences I

or PHYS 110-4* Introductory Physics I: Mechanics

PHYS 111-4* Introductory Physics II: Waves and Electricity

*Note: PHYS 110-4 (Introductory Physics I: Mechanics) and PHYS 111-4 (Introductory Physics II: Waves and Electricity) are strongly recommended for all majors.

Upper-Division Requirement

CPSC 320-3 Programming Languages
CPSC 321-3 Operating Systems
CPSC 370-3 Functional and Logic Programming
CPSC 340-3 Theory of Computation

Six A minimum of 6 credit hours of 300- or 400-level Computer Science; and a minimum of 6 credit hours of 400-level Computer Science (excluding seminar, project, and special topics courses).

MATH 320-3 Survey of Algebra

MATH 326-3 Advanced Linear Algebra

MATH 335-3 Introduction to Numerical Methods

STAT 371-3 Probability and Statistics for Scientists and Engineers

Three A minimum of 3 credit hours of 300- or 400-level Mathematics; and a minimum of 6 credit hours of 400-level Mathematics. Between the two disciplines, a minimum of 15 credit hours at the 400 level must be completed.

Note: CPSC 340-3 (Theory of Computation) is recommended.

Elective and Academic Breadth

Elective credit hours <u>must be taken</u> as necessary to ensure completion of a minimum of <u>123</u> <u>124</u> credit hours including any additional credit hours necessary to meet the Academic Breadth requirement of the University (see Academic Regulation on *Academic Breadth*).

S-202504.51

Change(s) to Program Requirements— Joint Major in Computer Science and Physics Fredi

That on the recommendation of the Senate Committee on Academic Affairs, the change(s) to the Joint Major in Computer Science and Physics on page 80 of the 2024/2025 undergraduate calendar be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

Joint Major in Computer Science and Physics (BSc)

The minimum requirement for completion of a Bachelor of Science with a Joint Major in Computer Science and Physics is 127 credit hours.

MATH 150-3 (Finite Mathematics for Business and Economics) may not be used for credit towards any Mathematics or Computer Science major or joint major.

Program Requirements

Lower-Division Requirement

CPSC 100-4	Computer Programming I
CPSC 101-4	Computer Programming II
CPSC 141-3	Discrete Computational Mathematics
CPSC 200-3	Algorithm Analysis and Development
CPSC 224-3	Introduction to Database Systems
CPSC 231-4	Computer Organization and Architecture
CPSC 281-3	Data Structures I
ENGL 170-3	Writing and Communication Skills or
ENGL 270-3	Expository Writing
MATH 100-3	Calculus I MATH
101-3	Calculus II
MATH 202-3	Multivariable Calculus I
MATH 204-3	Multivariable Calculus II
MATH 220-3	Linear Algebra
MATH 230-3	Ordinary Differential Equations and Boundary Value Problems
PHYS 110-4	Introductory Physics I: Mechanics
PHYS 111-4	Introductory Physics II: Waves and Electricity
PHYS 200-3	Thermal Physics
PHYS 202-4	Electromagnetism and Optics
PHYS 205-3	Modern Physics I
PHYS 206-4	Modern Physics II

Upper-Division Requirement

Two of the following:

CPSC 300-3	Software Engineering
CPSC 320-3	Programming Languages
CPSC 321-3	Operating Systems
CPSC 340-3	Theory of Computation
CPSC 370-3	Functional and Logic Programming

Twelve An additional 15 credit hours of upper-level Computer Science, of which at least six 6 must be at the 400 level (excluding seminar, project, and special topics courses).

MATH 335-3 Introduction to Numerical Methods

MATH 336-3 Intermediate Differential Equations

PHYS 300-3 Classical Mechanics PHYS 302-3 Quantum Mechanics I

PHYS 305-4 Electronics [which must be taken before CPSC 231-4 (Computer Organization and

Architecture)]

PHYS 404-3 Solid State Physics

Nine An additional $\underline{9}$ credit hours of upper-level Physics, of which at least $\underline{\text{six}}$ $\underline{6}$ must be at the 400 level (excluding project and special topics courses).

Elective and Academic Breadth

Elective credit hours must be taken as necessary to ensure completion of a minimum of 127 credit hours including any additional credit hours necessary to meet the Academic Breadth requirement of the University (see Academic Regulation on *Academic Breadth*)

S-202504.52

Change(s) to Program Requirements—BSc Minor in Computing

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the program requirements for the BSc Minor in Computing, on page 81 of the 2024/25 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

Minor in Computing

The Minor in Computing requires the following 29 credit hours of courses:

Requirements

CPSC 100-4	Computer Programming I
CPSC 101-4	Computer Programming II
CPSC 141-3	Discrete Computational Mathematics
CPSC 200-3	Algorithm Analysis and Development
CPSC 224-3	Introduction to Database Systems
CPSC 281-3	Data Structures I
CPSC 300-3	Software Engineering I
CPSC 324-3	Introduction to Database Systems
CPSC 344-3	Data Communications and Networking
or CPSC 4	144-3 Computer Networks

One Two additional Computer Science courses, one of which must be upper division Computer Science course**

S-202504.53

Course Deletion - CPSC 200-3 Algorithm Analysis and Development

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the course CPSC 200-3 Algorithm Analysis and Development, on page 219 of the 2024/2025 undergraduate calendar be deleted.

Effective Date: September 2025

CARRIED

S-202504.54

Course Deletion – CPSC 222-3, Introduction to Concurrent and Distributed Programming

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the course CPSC 222-3, Introduction to Concurrent and Distributed Programming, on page 219 of the 2024/2025 undergraduate calendar be deleted.

Effective Date: September 2025

CARRIED

S-202504.55

Course Deletion – CPSC 242-3, Mathematical Topics for Computer Science

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the course CPSC 242-3, Mathematical Topics for Computer Science, on page 219 of the 2024/2025 undergraduate calendar be deleted.

Effective Date: September 2025

CARRIED

Motions .56 to .61 were moved as an omnibus motion. Senator Casperson abstained.

S-202504.56

New Course Approval – CPSC 272 Web Application Development

Fredi

That on the recommendation of the Senate Committee on Academic Affairs, the new course CPSC 272 Web Application Development be approved as proposed.

Effective Date: September 2025

^{**}MATH 335-3 (Introduction to Numerical Methods) may be used to meet this requirement.

CARRIED

This course introduces client-side and server-side mechanisms for creating dynamic web applications that are interactive and data driven. Topics include browser-server interaction via HTTP, static web page creation using current markup and styling languages, client-side programming with modern scripting languages and the DOM, server-side programming with emerging web programming languages, and frameworks. This course provides a breadth of knowledge of many tools/technologies rather than deep knowledge of any specific tool or technology. **Prerequisites (taken prior):** CPSC 101-4

Prerequisites with concurrency (taken prior or simultaneously): prior

S-202504.57

New Course Approval – CPSC 357-3 Mobile Application Development

Fredj

That on the recommendation of the Senate Committee on Academic Affairs, the new course CPSC 357-3 Mobile Application Development be approved as proposed.

Effective Date: September 2025

CARRIED

This course focuses on the fundamentals of mobile application development. Topics include the mobile development environment, user interface design with views and layouts, app lifecycle management, and event handling. Students learn about data management through intents, file systems, shared preferences, and databases. An introduction to networking, cloud integration, and best practices for building scalable, efficient mobile apps is provided. Development is conducted using an industry-standard IDE, with hands-on exercises that emphasize real-world mobile development and deployment.

Prerequisites (taken prior): CPSC 101

Prerequisites with concurrency (taken prior or simultaneously): prior

S-202504.58

New Course Approval – CPSC 461-3 Applied Machine Learning

Fred

That on the recommendation of the Senate Committee on Academic Affairs, the new course CPSC 461-3 Applied Machine Learning be approved as proposed.

Effective Date: January 2026

CARRIED

This course explores key areas of machine learning and data mining, focusing on the best ways to apply these concepts in actual systems. This course focuses on supervised machine learning methods, but it also touches on unsupervised learning. Key subjects include essential algorithms like linear and logistic regression, decision trees, support vector machines, and clustering, along with neural networks. Students also delve into important methods for choosing the right features in data, reducing data complexity, estimating errors, and practical testing of these methods

Prerequisites (taken prior): CPSC 371 or permission of the instructor

S-202504.59

New Course Approval - CPSC 476-3 Social Robotics

Fredj

That on the recommendation of the Senate Committee on Academic Affairs, the new course CPSC 476-3 Social Robotics be approved as proposed.

Effective Date: January 2026

CARRIED

This course offers a comprehensive introduction to the field of social robotics, emphasizing a human-centered approach and real-world applications. It covers the fundamentals, principles, and theories involved in designing, developing, and deploying robots capable of fostering meaningful social interactions with humans across diverse contexts, such as robots as tools in education or robot-assisted therapy. Through a combination of lectures, discussions, and critical analyses of human-robot interaction, the course provides opportunities to engage with key methodologies, and practical applications, equipping students with a thorough understanding of this rapidly evolving discipline.

Prerequisites (taken prior): CPSC 101-3

S-202504.60

New Course Approval – CPSC 661-3 Applied Machine Learning

Fredi

That on the recommendation of the Senate Committee on Academic Affairs, the new course CPSC 661-3 Applied Machine Learning be approved as proposed.

Effective Date: January 2026

CARRIED

This advanced course explores key areas of machine learning and data mining, focusing on the best ways to apply these concepts in actual systems. This course focuses supervised machine learning methods, but it also touches on unsupervised learning. Key subjects include essential algorithms like linear and logistic regression, decision trees, support vector machines, and clustering, along with neural networks. Students also delve into important methods for choosing the right features in data, reducing data complexity, estimating errors, and practical testing of these methods.

Prerequisites (taken prior): Upper-division standing, or permission of instructor.

Co-requisites (must be taken simultaneously): prior Preclusions: CPSC 461-3 Applied Machine Learning

S-202504.61

New Course Approval – CPSC 676-3 Social Robotics

Fredj

That on the recommendation of the Senate Committee on Academic Affairs, the new course CPSC 676-3 Social Robotics be approved as proposed.

Effective Date: January 2026

CARRIED

This advanced course offers a comprehensive introduction to the field of social robotics, emphasizing a human-centered approach and real-world applications. It covers the fundamentals, principles, and theories involved in designing, developing, and deploying robots capable of fostering meaningful social interactions with humans across diverse contexts, such as robots as tools in education or robot-assisted therapy. Through a combination of lectures, discussions, and critical analyses of human-robot interaction, the course provides opportunities to engage with key methodologies, and practical applications, equipping students with a thorough understanding of this rapidly evolving discipline.

Prerequisites (taken prior): CPSC 101-3

Prerequisites with concurrency (taken prior or simultaneously): prior

Preclusions: CPSC 476-3 Social Robotics

S-202504.62

Change(s) to Course Description and Prerequisites – CPSC 320-3 Programming Languages Tayares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the course description and prerequisites for CPSC 320-3 Programming Languages on page 220 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

CPSC 320-3 Programming Languages

This course is a general introduction to programming languages. Topics include an overview of programming languages and language design objectives, specification of syntax and semantics, virtual machines and language translation, lambda calculus and theoretical fundamentals, program correctness and reasoning about programs, programming language constructs, declarations and types, abstraction mechanisms, and programming paradigms. An interpreter based approach is used to describe the semantics of language constructs. Assignments include case studies and laboratory work a teambased report on a particular language.

Prerequisite(s): <u>CPSC 141-3</u> <u>CPSC 242-3</u> and CPSC 281-3, or permission of the chair RecommendedRecommendation(s): CPSC 340-3

S-202504.63

Change(s) to Course Prerequisites – CPSC 321-3, Operating Systems

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the course prerequisites for CPSC 321-3, Operating Systems, on page 220 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

CPSC 321-3 Operating Systems

This course introduces the fundamental concepts of operating systems. Topics include tasking and processes, process co-ordination and synchronization, scheduling and dispatch, physical and virtual memory organization, paging and segmentation, device management, file systems, and security and protection. Students study a simple operating system and have an opportunity to make modifications to it in laboratory exercises.

Prerequisite(s): CPSC 222-3, CPSC 231-4, CPSC 242-3, and CPSC 281-3

S-202504.64

Change(s) to Course Description, Prerequisites and Number – CPSC 324-3 Introduction to Database Systems Tayares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the course description, prerequisites, and course number for CPSC 324-3, of the undergraduate calendar on page 220 of the 2024/25 be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

CPSC 224324-3 Introduction to Database Systems

This course focuses on <u>core concepts of database</u> <u>systems</u>, the relational database model, <u>data modeling</u>, and <u>querying</u>. Topics include <u>the purpose and components of database systems</u>, <u>storage structure and access methods</u>, <u>data definition and data manipulation language</u>, <u>relational algebra and calculus</u>, <u>and SQL</u> core <u>DBMS functionalities</u>, <u>relational models and algebra</u>, <u>SQL</u>, <u>database design</u>, <u>and the entity-relationship model</u>. Also discussed are best practices, <u>such as the use of logical schema and normalization</u>. <u>An introduction to database design using entity-relationship model</u>, <u>functional dependencies</u>, <u>and theory of normalization is provided</u>. <u>An applied project using business requirements to answer complex business questions is provided</u>. A relational DBMS is used <u>for understanding SQL and application development in SQL-like languages and general purpose host languages with application program interfaces <u>to gain</u> high competency with using SQL and other database-related tasks.</u>

Prerequisite(s): CPSC 281-3 101-4 Recommended

Co-requisite(s): CPSC 281-3 Preclusion(s):

CPSC324-3, CPSC 422-3

S-202504.65

Change(s) to Course Description and Prerequisites – CPSC 340-3 Theory of Computation Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the course description and prerequisites for CPSC 340-3 Theory of Computation on page 220 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

CPSC 340-3 Theory of Computation This course examines regular expressions, deterministic and non-deterministic finite automata, centext-free and other grammars, pushdown automata, Chomsky and Greibach normal forms, Chomsky hierarchy, pumping lemmas, Turing machines, undecidability, computability, recursive function theory, computational complexity, NP-hard and NP-complete problems., and context-free and other grammars.

Prerequisite(s): CPSC 141-3 or CPSC 142-3, or CPSC 242-3 and upper-division standing

S-202504.66

Change(s) to Course Prerequisites – CPSC 354-3, Introduction to Business Intelligence

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the course prerequisites for CPSC 354-3, Introduction to Business Intelligence, on page 220 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

CPSC 354-3 Introduction to Business Intelligence This course provides students with an understanding of business intelligence which involves conversion of mass data into effectively communicated information through visual, interactive media that enables evidence-based strategic decision making. Course topics include: data extract-transform- load (ETL); data quality; master data management (MDM); data warehouse models; conformance; star/ or snowflake dimensional models; enline transaction processing (OLTP); enline analytical processing (OLAP); effective data visualization (lead/lag-key performance indicators, scorecards, dashboards, reports),; governance,; success/ or failure factors,; and emerging trends. Students apply the concepts_in a term project using-leading technologies and business intelligence tools.

Prerequisite(s): COMM 351-3 or CPSC 324224-3 or CPSC 351-3

Preclusion(s): COMM 354-3

S-202504.67

Change(s) to Course Title, Description and Prerequisites – CPSC 371-3 Artificial

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the course title, description and prerequisite for CPSC 371-3 Artificial Intelligence on page 221 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

CPSC 371-3 Artificial Intelligence I Productions and matching, knowledge representation, search, logical reasoning and the use of PROLOG in learning, natural-language understanding, computer vision, expert systems. This course introduces foundational concepts, techniques, and applications of artificial intelligence (AI), blending classical approaches with recent advancements in the field. Students study traditional AI methods, including search algorithms and knowledge representation, alongside contemporary techniques such as modern machine learning and probabilistic modeling. This course emphasizes understanding algorithmic frameworks and the evolution of AI methods to solve complex problems.

Prerequisite(s): CPSC 370-3 CPSC 281-3 and MATH 220-3, or permission of the instructor

S-202504.68

Change(s) to Course Prerequisites – CPSC 450-3, Bioinformatics

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the course prerequisites for CPSC 450-3, Bioinformatics, on page 222 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

CPSC 450-3 Bioinformatics

This course introduces computational techniques for solving biological problems and presents an overview of tools and the methods used to analyze large biological data sets. After introducing the background in molecular biology for computer scientists,—cells and organelles, chromosome, gene, DNA, RNA, proteins, transcription and translation—the course explores pairwise and multiple sequence alignment, sequence database searches, pattern identification of genes, promoters, and transcription factor binding sites, as well as secondary and tertiary structure prediction for RNA and proteins. Markov models for gene prediction are introduced.

Prerequisite(s): CPSC 324-3 CPSC 224-3 or permission of the instructor

S-202504.69

Change(s) to Course Prerequisites – ASTR 120-3 Introduction to Astronomy I: The Solar System Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the change(s) to the course prerequisites for ASTR 120-3, on page 202 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

ASTR 120-3 Introduction to Astronomy I: The Solar System

This is an introductory course in astronomy that is general enough to be of interest to science and non-science majors with a proper background in mathematics. This course is complementary to ASTR 121-3. Topics include: an overview of our solar system; the Sun; Earth and Moon; the inner planets; the gas giants and their ring structures and moons; Pluto and Charon; asteroids, comets, meteors, and meteorites; the origin and evolution of our solar system; the origin and evolution of the Sun; and other solar systems and exoplanets. ASTR 120 and ASTR 121 may be taken in either order.

Prerequisite(s): Principles of Math 11 or At least one of Pre-calculus 11 or Pre-calculus 12 or Foundations of Math 11 or Foundations of Math 12 or UNIV 113-3 or MATH 115-3 or permission of the instructor.

<u>UNIV 113-3 or MATH 115-3 may be taken concurrently.</u> Preclusion(s): PHYS 120-3

S-202504.70

Change(s) to Course Prerequisites – ASTR 121-3 Introduction to Astronomy II: The Universe

That on the recommendation of the Senate Committee on Academic Affairs, the change(s) to the course prerequisites for ASTR 121-3, on page 202 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

ASTR 121-3 Introduction to Astronomy II: The Universe This is an introductory course in astronomy general enough to be of interest to science and non-science majors with a proper background in mathematics. This course is complementary to ASTR 120-3. Topics include: the origins of stars and planetary systems; the Sun; properties and structures of stars; stellar interiors; the evolution of stars; stellar remnants; white dwarfs; neutron stars; black holes, and warped spacetime; the Milky Way; the universe of galaxies; distance scales and indicators; active galaxies and quasars; and cosmology; and astrobiology. ASTR 121 and ASTR 120 may be taken in either order.

Prerequisite(s): Principles of Math 11 or At least one of Pre-calculus 11 or Pre-calculus 12 or Foundations of Math 11 or Foundations of Math 12 or UNIV 113-3 or MATH 115-3 or permission of the instructor.

UNIV 113-3 or MATH 115-3 may be taken concurrently. Preclusion(s): PHYS
121-3

S-202504.71

Change(s) to Course Prerequisites – PHYS 115 General Introduction to Physics

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the change(s) to the course prerequisites for PHYS 115, on page 288 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

<u>Proposed revision with changes underlined and deletions indicated clearly using "strikethrough"</u>: PHYS 115-4 General Introduction to Physics

This is an algebra-based introductory physics course for students without Grade 12 Physics. Topics include physics and measurement, motion in one and two dimensions, forces and Newton's laws of motion, circular motion, work and energy, electric forces and fields, electric potential, electric circuits, and magnetic forces and fields. Students with credit in Physics 12 require permission of the Program Chair.

<u>Prerequisite(s): At least one of Pre-calculus 11 or Pre-calculus 12 or Foundations of Math 11 or Foundations of Math 12 or UNIV 113-3 or MATH 115-3 or permission of the instructor. UNIV 113-3 or MATH 115-3 may be taken concurrently.</u>

Preclusion(s): Physics 12, and PHYS 100-4, and PHYS 110-4

Executive Summary of Motions for Engineering was included in the meeting package.

Motions .72 to .78 and motion .80 were moved as an omnibus motion. Senator Casperson abstained.

S-202504.72

Change(s) to Course Codes - Civil Engineering

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the Civil Engineering degree course codes on pages 105 – 106 of the 2024/25 undergraduate calendar be approved as proposed.

Effective Date: September 2026

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

[Courses will be alphabetically re-ordered once subject codes are changed.]

Program Requirements

First Year (Semesters 1 and 2)

CHEM 100-3	General Chemistry I CHEM
120-1	General Chemistry Lab I
CPSC 110-3	Introduction to Computer Systems and Programming ENGR
110-3	Technical Writing
ENGR 117-3	Engineering Design I
ENGR 130-4	Engineering Mechanics Statics ENGR
151-1	Engineering Tools I
ENGR 152-1	Engineering Tools II ENGR
270-3	Surveying
MATH 100-3	Calculus I MATH 101-
3	Calculus II MATH 220-
3	Linear Algebra
PHYS 110-4	Introductory Physics I: Mechanics
PHYS 111-4	Introductory Physics II: Waves and Electricity

Second Year (Semesters 3 and 4)

CIVE ENGR 241-4 Civil Engineering Materials CIVE

ENGR 260-4 Soil Mechanics

CIVE ENGR 320-3 Structural Analysis I ENGR

211-3 Engineering Communication ENGR 217-3

Engineering Design II

ENGR 221-3 Thermodynamics and Heat Transfer ENGR 240-4

Mechanics of Materials

ENGR 254-4 Fluid Mechanics I MATH

200-3 Calculus III

MATH 230-3 Ordinary Differential Equations and Boundary Value Problems STAT

271-3 Statistical Reasoning for Engineers

Choose 3 credit hours from the lists of electives

Third Year (Semesters 5 and 6)

CIVE ENGR 321-3 Structural Analysis II
CIVE ENGR 340-3 Structural Design I
CIVE ENGR 341-3 Structural Design II

CIVE ENGR 360-4 Geotechnical Engineering CIVE

ENGR 370-3 Transportation Systems CIVE

ENGR 372-3 Construction Management

ENGR 300-3 Sustainable Principles of Engineering ENGR 353-3 Open

Channel Flow

ENGR 354-3 Fluid Mechanics II

ENGR 358-4 Water and Wastewater Systems

ENGR 380-3 Engineering Economics

MATH 335-3 Introduction to Numerical Methods

Fourth Year (Semesters 7 and 8)

ENGR 400-6 Engineering Capstone Design Project ENGR 410-3 Professional Practice and Law ENVE ENGR 455-3 Engineering Hydrology

One of the following:

ENGR 411-3 Project Management

ENGR 412-3 Engineering Business and Project Management Choose 21 credit

hours from the lists of electives

Electives

Electives must be chosen from the following lists.

A minimum of 12 credit hours must be chosen from the Civil and Environmental Engineering elective lists.

Choose 6 or 9 credit hours from the Civil Engineering technical electives:

CIVE ENGR 438-4 Rock Mechanics and Rock Engineering

CIVE ENGR 439-3 Introduction to Structural Fire Engineering

CIVE ENGR 441-3 Bridge Engineering

CIVE 451 ENGR 424-3 Building Physics

CIVE ENGR 461-3 Foundation Design

CIVE ENGR 471-3 Cold Climate Construction Engineering

CIVE ENGR 481-3 Urban and Regional Planning

CIVE ENGR 491-3 Introduction to Wood as a Building Material

ENGR 450-3 CAD/BIM in the Construction Industry

Choose 3 or 6 credit hours from the Environmental Engineering electives:

ENGR 406-3 Environmental Modelling

ENGR 421-3 Ecological Engineering and Design

ENVE ENGR 317-3 Engineering Design III: Municipal Engineering

ENVE ENGR 462-3 Geoenvironmental Engineering

S-202504.73

Change(s) to Course Codes – Environmental Engineering Tayares That on the recommendation of the Senate Committee on Academic Affairs, t the changes to the Environmental Engineering degree course codes on pages 106 – 107 of the 2024/25 undergraduate calendar be approved as proposed

Effective Date: September 2026

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

[Courses will be alphabetically re-ordered once subject codes are changed.]

Program Requirements

First Year (Semesters 1 and 2)

CHEM 100-3	General Chemistry I		
and CHEM 120-1 General Chemistry Lab I			
CHEM 101-3	General Chemistry II		
and CHEM 121-1 General Chemistry Lab II			
CPSC 110-3	Introduction to Computer Systems and Programming		
ENGR 110-3	Technical Writing		
ENGR 117-3	Engineering Design I		
ENGR 130-4	Engineering Mechanics Statics		
ENGR 151-1	Engineering Tools I		
ENGR 152-1	Engineering Tools II		
ENGR 270-3	Surveying		
MATH 100-3	Calculus I MATH 101-3		
	Calculus II MATH 220-3		
	Linear Algebra		
PHYS 110-4	Introductory Physics I: Mechanics		

Second Year (Semesters 3 and 4)

ENGR 210-3	Material and Energy Balances	
ENGR 211-3	Engineering Communication	
ENGR 217-3	Engineering Design II	
ENGR 220-3	Engineering Chemistry	
ENGR 221-3	Thermodynamics and Heat Transfer	
ENGR 254-4	Fluid Mechanics I	
ENSC 201-3	Weather and Climate	
ENVE ENGR 222-3 Engineering Biology		
FSTY 205-3	Introduction to Soil Science	
or GEOG 210-3 Introduction to Earth Science		
MATH 200-3	Calculus III	
MATH 230-3	Ordinary Differential Equations and Boundary Value Problems	
STAT 271-3	Statistical Reasoning for Engineers	

Third Year (Semesters 5 and 6)

CIVE ENGR 260	-4 Soil Mechanics
ENGR 300-3	Sustainable Principles of Engineering
ENGR 353-3	Open Channel Flow
ENGR 354-3	Fluid Mechanics II
ENGR 358-4	Water and Wastewater Systems
ENGR 380-3	Engineering Economics
ENVE ENGR 310	0-3 Environmental Engineering Processes
ENVE ENGR 317	7-3 Engineering Design III: Municipal Engineering
ENVE ENGR 31	8-3 Environmental Engineering Measurement Lab
ENVE ENGR 351	-4 Groundwater Flow and Contaminant Transport

MATH 335-3 Introduction to Numerical Methods Choose 3 credit hours from the lists of electives

Fourth Year (Semesters 7 and 8)

ENGR 400-6 Engineering Capstone Design Project

ENGR 406-3 Environmental Modelling

ENGR 410-3 Professional Practice and Law

ENVE ENGR 430-3 Energy Systems

ENVE ENGR 455-3 Engineering Hydrology

One of the following:

ENGR 411-3 Project Management

ENGR 412-3 Engineering Business and Project Management Choose 18 credit

hours from the lists of electives

Electives

Electives must be chosen from the following lists.

Choose 9 credit hours from the following Engineering electives list:

CIVE ENGR 360-4 Geotechnical Engineering

CIVE ENGR 370-3 Transportation Systems

CIVE ENGR 438-4 Rock Mechanics and Rock Engineering

CIVE 451 ENGR 424-3 Building Physics

CIVE ENGR 481-3 Urban and Regional Planning

ENGR 421-3 Ecological Engineering and Design

ENGR 450-3 CAD/BIM in the Construction Industry

ENVE ENGR 462-3 Geoenvironmental Engineering

S-202504.74

Change(s) to Course Codes - Environmental Engineering

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the Environmental Engineering degree course codes on pages 109-109 of the 2024/25 undergraduate calendar be approved as proposed

Effective Date: September 2026

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

[Courses will be alphabetically re-ordered once subject codes are changed.]

Transit Between Institutions

Transit between years and institutions requires good academic standing in the program at the most recent institution of residence (UNBC or UBC).

At UNBC, good academic standing means a student must have a Cumulative GPA of 2.00 or greater in required 1st and 2nd year courses (including 3 credit hours of Humanities or Social Sciences), and must have successfully completed all ENGR, ENVE, MATH and STAT courses. For transit to UBC, all transit requirements must be met by April 30th of the year of transfer.

At UBC, good academic standing means an average of at least 55% and passing grades in at least 65% of the credit hours taken. Refer to the UBC Environmental Engineering website (enve.ubc.ca) for more details on UBC to UNBC transit requirements.

Program Requirements

UNBC degree requirements: 91 credit hours UBC degree requirements: 72 credit hours Total degree requirements: 163 credit hours

Semester 1 and 2 completed at UNBC

CHEM 100-3 General Chemistry I

and CHEM 120-1 General Chemistry Lab I

CHEM 101-3 General Chemistry II

and CHEM 121-1 General Chemistry Lab II

CPSC 110-3 Introduction to Computer Systems and Programming

ENGR 110-3 Technical Writing

ENGR 117-3 Engineering Design I

ENGR 130-4 Engineering Mechanics Statics

ENGR 151-1 Engineering Tools I

ENGR 152-1 Engineering Tools II

ENGR 270-3 Surveying

MATH 100-3 Calculus I

MATH 101-3 Calculus II

MATH 220-3 Linear Algebra

PHYS 110-4 Introductory Physics I: Mechanics

Semester 3 and 4 completed at UNBC

ENGR 210-3 Material and Energy Balances

ENGR 211-3 Engineering Communication

ENGR 217-3 Engineering Design II

ENGR 220-3 Engineering Chemistry

ENGR 221-3 Thermodynamics and Heat Transfer

ENGR 254-4 Fluid Mechanics I

ENSC 201-3 Weather and Climate

ENVE ENGR 222-3 Engineering Biology

FSTY 205-3 Introduction to Soil Science

or GEOG 210-3 Introduction to Earth Science

MATH 200-3 Calculus III

MATH 230-3 Ordinary Differential Equations and Boundary Value Problems

STAT 271-3 Statistical Reasoning for Engineers

S-202504.75

Change(s) to Course Codes – Civil Engineering

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the change(s) to the subject code for CIVE courses on pages 209 – 211 of the 2024/2025 undergraduate academic calendar be approved as proposed.

Effective Date: September 2026

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

CIVE ENGR 241-4 Civil Engineering Material This course introduces the structure and properties of common civil engineering materials such as aggregates, cement, concrete, wood, steel, and other construction materials. The emphasis is on the relationship between the structure of materials and their mechanical properties.

Prerequisite(s): Admission to an Engineering program; CHEM 100-3; CHEM 120-1; ENGR 130-4; MATH 101-3; MATH 220-3 Preclusion(s): CIVE 241-4

CIVE ENGR 260-4 Soil Mechanics This course provides students with a theoretical and practical understanding of soil mechanics, principles, and properties. Topics include, but are not limited to, the following: physical properties of soils; classification; soil compaction and permeability; seepage; stresses in soils; and consolidation.

Prerequisite(s): Admission to an Engineering program; ENGR 130-4; MATH 220-3; PHYS 110-4

Preclusion(s): CIVE 260-4

CIVE ENGR 320-3 Structural Analysis I This course introduces theory and application of structural analysis with concepts including, but not limited to, analysis of statically determinate structures such as trusses, beams, frames, cables, and arches; influence lines and moving loads; and calculation of displacements using virtual work. This course also includes an introduction to the analysis of indeterminate structures using force methods, and an introduction to displacement methods using slope- deflection and moment distribution.

Prerequisite(s): Admission to an Engineering program; ENGR 240-4

Preclusion(s): CIVE 320-3

CIVE ENGR 321-3 Structural Analysis II This course explores the following advanced concepts of structural analysis: shear flow and deformation; St. Venant torsion and warping torsion; beams on an elastic foundation; shear wall analysis and elasto-plastic analysis. Students are introduced to the following finite element method and structural dynamics: mode shapes; natural frequencies; lumped mass models; modal analysis; and response spectra.

Prerequisite(s): Admission to an Engineering program; CIVE ENGR 320-3; MATH 220-3

Preclusion(s): CIVE 321-3

CIVE ENGR 340-3 Structural Design I This course focuses on steel and wood structure design. Topics include, but are not limited, to, the following: design loads for structures; properties of structural steel and structural wood; design of tension, compression, and bending members; bolted and welded connections; and use of design standards and handbooks.

Prerequisite(s): Admission to an Engineering program; <u>ENGR 217-3</u>, <u>CIVE ENGR</u> 241-4; <u>CIVE ENGR</u> 320-3, <u>ENGR 217-3</u>,

Preclusion(s): CIVE 340-3

CIVE ENGR 341-3 Structural Design II This course focuses on concrete and masonry structure design. Topics include, but are not limited to, the following: design loads for structures; properties of concrete and masonry; design of tension, compression, and bending members; connections; and use of design standards and handbooks.

Prerequisite(s): Admission to an Engineering program; <u>ENGR 217-3</u>, <u>CIVE ENGR</u> 241-4; <u>CIVE ENGR</u> 320-3, <u>ENGR 217-3</u>,

Preclusion(s): CIVE 341-3

CIVE ENGR 360-4 Geotechnical Engineering This course builds on the understanding of CIVE-ENGR 260-4 Soil Mechanics, utilizing soil properties for engineering analysis of various geotechnical problems. Topics include, but are not limited to, the following: shear strength of soil, subsurface exploration; ground improvement; slope stability; lateral earth pressure; retaining walls and braced cuts; shallow foundations; bearing capacity; and pile foundations/drill shafts.

Prerequisite(s): Admission to an Engineering program and CIVE ENGR 260-4

Preclusion(s): CIVE 360-4

CIVE ENGR 370-3 Transportation Systems This course introduces elements and operations involved in various transportation systems (air, sea, rail, road). Topics include, but are not limited to, the following: analysis of system performance; traffic stream characteristics; traffic flow theory; traffic engineering studies; intersection control; capacity and level of service of freeways and signalized intersections; the role of traffic engineering in sustainable transportation systems; highway safety; and travel demand forecasting.

Prerequisite(s): Admission to an Engineering program; ENGR 211-3; ENGR 217-3

Preclusion(s): CIVE 370-3

CIVE ENGR 372-3 Construction Management This course provides the knowledge required for managers. Topics include, but are not limited to, the following: construction methods selection; practice of construction management; contract administration and control; computer integration in administration; control and project network techniques; total quality management and the ISO framework; design of false work and formwork lifting and

rigging; welding techniques and procedures; and occupational health and safety.

Prerequisite(s): Admission to an Engineering program; ENGR 211-3; ENGR 217-3

Preclusion(s): CIVE 372-3

CIVE 451 ENGR 424-3 Building Physics This course explores concepts of building physics associated with the design of modern buildings. The course focuses on the building envelope's role in environmental separation and controlling the movement of heat, air, and water in liquid and vapour states.

Prerequisite(s): Admission to an Engineering program; ENGR 221-3; ENGR 300-3

CIVE ENGR 438-4 Rock Mechanics and Rock Engineering This course introduces rock mechanics and its applications to rock engineering problems. Topics include mechanical properties of intact rock; rock mass properties and classifications; structural mapping and stereonets; rock and rock mass strength criteria; stresses in rock masses; rock slope stability analysis; rock support and stabilization; and empirical, analytical, and numerical analysis techniques for underground excavations.

Prerequisite(s): CIVE ENGR 360-4
Preclusion(s): CIVE 438-4. ENGR 638-4

CIVE ENGR 439-3 Introduction to Structural Fire Engineering This course introduces fire as a structural hazard and presents basic strategies for achieving fire safety in the built environment. Relevant topics include, but are not limited to, the fundamentals of fire behavior, fire load, active- and passive-fire safety measures, material properties at elevated temperatures, and design methods and code guidelines for fire resistant structural design.

Prerequisite(s): CIVE ENGR 321-3 and CIVE ENGR 341-3

Preclusion(s): CIVE 439-3, ENGR 639-3

CIVE <u>ENGR</u> 441-3 Bridge Engineering This course introduces engineering principles and their applications to bridge engineering problems. Topics include <u>an</u> overview and history of bridges, bridge types and components, design considerations, structural modelling and analysis, and design of substructure and superstructure.

Prerequisite(s): CIVE ENGR 340-3 and CIVE ENGR 341-3

Preclusion(s): CIVE 441-3

CIVE <u>ENGR</u> **461-3 Foundation Design** This course introduces building and structure foundations. Topics include, but are not limited to, the following: stress distribution in soils; settlement of structures; bearing capacity of soils; design of shallow foundations; retaining structures; excavations; geotechnical earthquake engineering; design of deep foundations; piles and pile foundations; and the underpinning of existing structures.

Prerequisite(s): Admission to an Engineering program; CIVE ENGR 321-3; CIVE ENGR 341-3; CIVE ENGR 360-4

Preclusion(s): CIVE 461-3

CIVE ENGR 471-3 Cold Climate Construction Engineering This course introduces engineering concerns related to a cold and variable climate. Topics include, but are not limited to, the following: northern climates and permafrost; thermal deformation characteristics of frozen and unfrozen soils; thaw of permafrost and settlement; ice and snow construction; ice motion; policy issues; transportation in the north; and the design of roads, runways, and building foundations.

Prerequisite(s): Admission to an Engineering program; ENGR 300-3; CIVE ENGR 340-3; CIVE ENGR 372-3

Preclusion(s): CIVE 471-3

CIVE ENGR 481-3 Urban and Regional Planning This course provides an introduction to urban and regional planning. The course considers the legal, environmental, and governmental context of topics such as land use, growth management, transportation, environmental planning, and community development.

Prerequisite(s): Admission to an Engineering program; ENGR 300-3; CIVE ENGR 370-3

Preclusion(s): CIVE 481-3

CIVE ENGR 491-3 Introduction to Wood as a Building Material This course provides an overview of using wood as a building material. The course first examines the macroscopic and microscopic structures, chemical compositions,

physical, mechanical, and fire properties of wood. It then covers a variety of structural wood- based products by exploring the manufacturing process, characteristics, mechanical properties, and application in modern wood structures. The course also briefly introduces wood technologies related to the use of wood in buildings.

Prerequisite(s): Admission to an Engineering program; ENGR 240-4

Preclusion(s): CIVE 491-3, IENG 611-3

S-202504.76

Change(s) to Course Codes – ENVE Courses

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the subject code for ENVE courses on pages 243 – 245 of the 2024/2025 undergraduate academic calendar be approved as proposed.

Effective Date: September 2026

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

ENVE ENGR 222-3 Engineering Biology This course is an introduction to concepts in biology relevant to environmental engineering. Topics include, but are not limited to, the following: biochemistry; metabolism; microbial groups; biogeochemical cycles; biological pollution control; toxicity and dose-response relationships; and applications to engineering problems.

Prerequisite(s): Admission to an Engineering program; ENGR 220-3

Pre- or Corequisite(s): Prerequisite(s) with concurrency: ENGR 210-3

Preclusion(s): ENVE 222-3

ENVE ENGR 310-3 Environmental Engineering Processes This course examines the theory and design of physical, chemical, and biological unit operations within environmental engineering processes. Topics include, but are not limited to, the following: solid handling; solid-solid separation; solid-liquid separation; mixing, aeration, and kinetics of chemical and biological reactions; and ideal and non-ideal reactor design. Design problems and case studies provide students with an opportunity to develop processes using sequences of unit operations.

Prerequisite(s): Admission to an Engineering program; ENGR 210-3;-ENVE ENGR 222-3; MATH 200-3

Preclusion(s): ENVE 310-3

ENVE ENGR 317-3 Engineering Design III: Municipal Engineering This course explores engineering design of municipal infrastructure. Topics include, but are not limited to the following: design of water supply networks, stormwater systems, and solid waste management. The project-based design exercises require the application of sustainability principles, engineering tools, and teamwork.

Prerequisite(s): Admission to an Engineering program; ENGR 211-3; ENGR 217-3

Preclusion(s): ENVE 317-3

ENVE ENGR 318-3 Environmental Engineering Measurement Lab This course is a quantitative laboratory- and field-based course focusing on measurement and analysis of selected parameters relevant to environmental quality. Topics include natural and anthropogenic systems. Some lab sessions are problem-oriented, requiring students to generate a working hypothesis, plan the investigation, carry out the sampling, conduct the experiments, and evaluate the results.

Prerequisite(s): Admission to an Engineering program; ENVE ENGR 222-3; FSTY 205-3 or GEOG 210-3

Preclusion(s): ENVE 318-3

ENVE ENGR 351-4 Groundwater Flow and Contaminant Transport This course introduces fundamental principles of groundwater flow and their applications to solve problems related to groundwater resources evaluation, development, and management. Topics include the following: the role of groundwater in geological processes; the occurrence and movement of groundwater; steady-state and transient well hydraulics; aquifer testing techniques; unsaturated flow theory; contaminant transport processes; and mathematical models describing migration and chemical evolution of contaminant plumes.

Prerequisite(s): MATH 100-3 and MATH 101-3; or MATH 152-3; or permission of the instructor

Preclusion(s): ENVE 351-3

ENVE ENGR 430-3 Energy Systems This course explores the design of energy and resource recovery systems. Topics may include energy efficiency, solar energy, run-of-river hydroelectricity, heat recovery, anaerobic digestion, bioenergy, and waste-to-energy systems. Building on environmental engineering fundamentals, students develop sustainable energy system designs using software tools.

Prerequisite(s): Admission to an Engineering program; ENGR 300-3; ENVE ENGR 310-3; ENVE ENGR 317-3

Preclusion(s): ENVE 430

ENVE ENGR 455-3 Engineering Hydrology This course explores hydrologic processes. Topics include, but are not limited to, the following: weather; precipitation; infiltration; evaporation; snowmelt; runoff generation; hydrograph analysis; reservoir and channel routing; statistical methods and design floods; and hydrologic modelling.

Prerequisite(s): Admission to an Engineering program and ENGR 353-3

Preclusion(s): ENVE 455-3

ENVE ENGR 462-3 Geoenvironmental Engineering This course explores methods to mitigate environmental contamination. Topics may include regulatory requirements, site investigation, risk assessment, soil and groundwater remediation technologies, waste characterization, landfills, and recycling.

Prerequisite(s): Admission to an Engineering program; CIVE 260-4; ENGR 300-3

Preclusion(s): ENVE 462-3

S-202504.77

Change(s) to Course Codes – IENG courses

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the change(s) to the subject code for IENG courses on page 134-135 of the 2024/2025 graduate calendar be approved as proposed.

Effective Date: September 2026

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

IENG ENGR 611-3 Introduction to Wood as a Building Material This course provides an overview of using wood as a building material. The course first examines the macro- and microscopic structures of wood, chemical compositions, physical and mechanical properties, and then covers a variety of structural wood-based products by exploring the manufacturing process, characteristics, mechanical properties and application in modern wood structures. The course also briefly introduces wood technologies related to the use of wood in building, fire properties, and durability of wood.

Preclusion(s): IENG 611-3

IENG ENGR 612-3 Project Design I This course focuses on principles of structural mechanics and their applications in wood structures. Load calculation procedures for typical structures under practical conditions are presented. Analysis of different types of structural members and connections are discussed.

Preclusion(s): IENG 612-3

IENG ENGR 613-3 Wood Design I This course focuses on the design of timber structural elements and connections. Topics include the behaviour and design of bending, tension and compression members made of solid timber or glue-laminated timber, and the complete suite of contemporary connectors and connector systems. Students design and analyze various structural components and design, build, test, and analyze a connection assembly.

Preclusion(s): IENG 613-3

IENG ENGR 614-3 Engineering Vibration and Acoustics The first part of this course introduces engineering vibration theories, including free, harmonic, and forced vibration response of single- and

multiple-degree-of-freedom systems, distributed parameter systems, and experimental techniques in vibration testing, including non-destructive testing and the application of engineering vibration in non-seismic-related building design. The second part covers room acoustics, sound insulation performance of wall and floor assemblies, and sound transmission in wood buildings. The labs include modal testing and analysis, vibration data processing, reverberation time measurement, and sound insulation testing. *Preclusion(s): IENG 614-3*

IENG ENGR 615-3 Wood Science This course examines the macroscopic and microscopic anatomical features of wood and explores its physical properties. The course looks at the wood-water interaction and methods of wood drying. Students learn to identify macroscopically commonly used wood species macroscopically.

Prerequisite(s): IENG ENGR 611-3, or by permission of the Program Chair

Preclusion(s): IENG 615-3

IENG ENGR 624-3 Envelope Design This course addresses the fundamentals of building physics in building envelopes, thermal bridges, and hydrodynamic processes. Students examine airtightness and convection-based influences along with durability of building envelopes. The principles and details of energy-efficient design, specifically for wood buildings, are applied.

Preclusion(s): CIVE ENGR 451-3, IENG 624-3

IENG ENGR 626-3 Sustainable Design I This course focuses on sustainable design, durability, and resilience, as well as energy efficiency and lowest possible environmental impact. It addresses the adaptation of design to climate zones, the interconnection of architectural volumes, form, envelope design, and healthy living. It explores the integration of mechanical systems and their influence on design. Parameters of healthy living, air quality, and thermal comfort are introduced. Economic calculations and life cycle assessment are discussed.

Prerequisite(s): IENG ENGR 611-3, or by permission of the Program Chair

Preclusion(s): IENG 626-3

IENG ENGR 650-3 CAD/BIM in the Construction Industry This advanced course focuses on industry-specific topics, including Computer-Aided Design (CAD) and Design for Manufacturing and Assembly (DfMA), with a strong emphasis on their role in Building Information Modelling (BIM) as they relate to construction and engineering. New emerging trends of parametric design are also explored and further investigated for their role in state-of-the-art projects. The roles that interoperability, data exchange, and sharing have in the industry are discussed within the BIM context.

Preclusion(s): ENGR 450-3, IENG 650-3

IENG ENGR 722-3 Project Design II This course is a wood design studio that provides students with the opportunity to apply their design skills to a realistic design task.

Prerequisite(s): IENG ENGR 611-3 and IENG ENGR 613-3, or by permission of the Program Chair

Preclusion(s): IENG 722-3

IENG ENGR 723-3 Wood Design II This course focuses on structural design of timber floors and lateral load resisting systems. Topics include: the behavior and design of floors made from solid timber; engineered wood products; timber-concrete composites; contemporary lateral load resisting systems such as light-frame; cross-laminated timber shear walls and diaphragms; and moment frames. Students design and analyze various structural wood and hybrid systems.

Prerequisite(s): IENG ENGR 611-3 and IENG ENGR 613-3, or by permission of the Program Chair

Preclusion(s): IENG 723-3

IENG ENGR 727-3 Prefabrication and Digital Manufacturing in Wood Construction This course introduces students to prefabrication. Topics cover state-of-the-art fabrication technology including CNC-machines and

industrial robots, tooling options, material handling, and process flow. Students learn the basics of Design for Manufacturing and Assembly (DfMA) including machine interfacing, machining strategies, and how design decisions influence the ability to assemble and manufacture a structure to the highest standards and efficiency.

Prerequisite(s): IENG ENGR 611-3, or by permission of the Program Chair

Preclusion(s): IENG 727-3

IENG ENGR 729-3 Structural Dynamics and Seismic Design This course aims to acquaint graduate students and practicing engineers with theories of structural dynamics and principles of seismic design. Part one discusses concepts, theories, and methods for conducting analysis of distributed-parameter, single- and multi-degree-of-freedom systems subjected to various types of dynamic loads, including seismic excitation. Part two introduces principles of earthquake engineering and fundamentals of seismic hazards. Students learn philosophies, principles, and practices of seismic design of concrete, steel, timber, and composite structures in compliance with the National Building Code of Canada (NBCC).

Preclusion(s): IENG 729-3

IENG ENGR 731-9 Master of Engineering Project This course is the capstone project and can include various fields covered in the program. Students are encouraged to combine several topics to demonstrate integrated design skills.

Prerequisite(s): IENG <u>ENGR</u> 722-3 with a minimum grade of B- and IENG <u>ENGR</u> 723-3 with a minimum grade of B

Preclusion(s): IENG 731-9

IENG ENGR 738-3 Finite Element Analysis and Computational Engineering This course first reviews the basics of matrix structure analysis including bar, 2D truss, beam, and 2D frame elements, and then introduces the fundamental concepts of finite element analysis (FEA) including domain discretization, element types, system matrix assembly, and numerical solution techniques. Application of FEA to conduct structural analysis is covered using commercial software, including both static and dynamic analysis. Case studies focus on wood structures. Computational design and digital fabrication are introduced through guest lectures and additional materials.

Preclusion(s): IENG 738-3

IENG ENGR 739-3 Special Topics III This course focuses on recent developments in the Canadian and international wood and/or sustainable construction industry. Topics vary and explore recent trends, methods or new products and approaches in the industry. Field trip(s) are required.

Prerequisite(s): IENG ENGR 611-3

Preclusion(s): IENG 739-3

S-202504.78

Change(s) to Program Name – Master of Engineering in Integrated Wood Design

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the program name and description for Master of Engineering in Integrated Wood Design on page 72 of the 2024/2025 graduate calendar, be approved as proposed.

Effective Date: September 2026 – pending DQAB approval

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

Integrated Wood Design (MEng Program) Wood Engineering (MEng Program)

Website: www.unbc.ca/engineering/meng-integrated-wood-design

Wood is the world's most common and sustainable building material. Known for its aesthetic beauty, durability,

and ease of machinability, wood is becoming the leading building material in a new paradigm of sustainable and healthy building practices. Wood, known for its sustainable attributes, aesthetic beauty, durability, and ease of machinability, is becoming the leading building material in a new paradigm of sustainable and healthy building practices. Significant renewable wood resources in British Columbia and an international wood culture provide a strong impetus for UNBC, the province, and industrial partners to develop a leading education program centered on sustainable, healthy building practices using wood. deliver a program centered on sustainable building practices using wood.

In order to meet the needs of the profession, the Master of Engineering, Integrated Wood Design Master of Engineering in Wood Engineering develops students' understanding of wood as a versatile and sustainable building component that can be used in applications far beyond what could be achieved using concrete and steel. Students investigate wood at the micro and macro levels and explore the science and art of designing and building wood structures. material.

The one-year interdisciplinary Master's program can be completed in one or two years, and is built on four main three pillars:

- 1. Wood Mechanics and Timber Structures: Students gain a deep understanding of wood <u>as an engineering</u> <u>material</u>. Starting with <u>an understanding of</u> the supply chain, students come to appreciate the <u>sustainable</u> nature of wood, its unique structure, and its <u>strengths and weaknesses</u> <u>physical properties</u>, in relationship to other <u>commonly used building materials</u> its application in load resisting components and building envelopes.
- 2. Hands-on Experience: The only way to experience wood is to work with it, as it is one of the most complex building materials. Students build small-scale structures to explore the versatility and complexity of wood structures. Community or industry internships may be included.
- 3. Team Work: At the core of successful design teams is the ability to communicate effectively and integrate different points of view. Students undertaking this program are immersed in the science and art of design team work. Multi-disciplinary teams work together throughout the program to build effective communication skills by working with individuals with diverse backgrounds and a wide range of experts such as technical experts, professional engineers, architects, and community members.
- 4. Sustainability: Students study and come to appreciate a range of state-of-the-art sustainable designs and how those designs fit within the broader social and political context of sustainability.

Co-operative education is an optional but strongly recommended element of the program.

Admission Requirements

In addition to the admission application requirements outlined in *General Admission* of the Graduate Academic Calendar, applicants are required to hold a four-year (120 credit hours) baccalaureate degree in Civil Engineering from a recognized institution.

For entry into the Master of Engineering, Integrated Wood Design in Wood Engineering degree program, students who do not meet the exemptions indicated in English Language Requirements in Admissions and Regulations must fulfill the English Language Requirements outlined below. meet one of the following criteria:

Score requirements must meet one of the following criteria:

IELTS (International English Language Testing System) score of at least 7.0 overall, with not less than 6.5 in any of the four modules;

TOEFL (Test of English as a Foreign Language) score of 100 in the internet-based test, with not less than 25 in any of the Reading, Listening, Writing or Speaking components; or equivalent other TOEFL score;

or the equivalent Master of Engineering, Integrated Wood Design level on another test of English language score accepted by the University

Exceptional Admission

Applicants who have a four-year (120 credit hour) baccalaureate degree (or equivalent) may be granted admission to the program if sufficient related engineering content can be demonstrated.

The <u>Ppre-Eentry</u> program as outlined in *Pre-Entry Program* in Admissions and Regulations is not applicable for applicants to gain entry to the <u>Master of Engineering</u>, <u>Integrated Wood Design Program</u> <u>Master of Engineering in Wood Engineering</u>.

Requirements

IENG ENGR 611-3 Introduction to Wood as a Building Material

IENG ENGR 613-3 Wood Design I

IENG ENGR 624-3 Envelope Design

IENG ENGR 722-3 Project Design II

IENG ENGR 723-3 Wood Design II

IENG ENGR 727-3 Prefabrication and Digital Manufacturing in Wood Construction

IENG ENGR 731-96 Master of Engineering Project

Electives

Two of the following:

ENGR 639-3 Advanced Structural Fire Engineering

IENG ENGR 614-3 Engineering Vibration and Acoustics

IENG 626-3 Sustainable Design I

IENG ENGR 650-3 CAD/BIM in the Construction Industry

IENG ENGR 729-3 Structural Dynamics and Seismic Design

IENG ENGR 738-3 Finite Element Analysis and Computational Engineering

S-202504.79

Course Deletion – ENVE 421-3 Contaminant Transport in the Environment

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, ENVE 421-3 Contaminant Transport in the Environment be deleted.

Effective Date: September 2026

CARRIED

S-202504.80

Change(s) to Course Credit Hours – IENG 731-9 Master of Engineering Project

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the change to the course credit hours for IENG 731-9 Master of Engineering Project on

page 135 of the 2024/2025 graduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

IENG 731-96 Master of Engineering Project

This course is the capstone project and can include various fields covered in the program. Students are encouraged to combine several topics to demonstrate integrated design skills.

Prerequisite(s): IENG 722-3 with a minimum grade of B- and IENG 723-3 with a minimum grade of B

S-202504.81

Change(s) to Course Prerequisites – ENGR 130-4 Engineering Mechanics Statics

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the course prerequisite of ENGR 130-4 Engineering Mechanics Statics on page 236 of

the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

ENGR 130-4 Engineering Mechanics Statics This course is an introduction to learning and applying the principles of statics required to solve engineering mechanics problems in the fields of civil and environmental engineering. Emphasis is placed on drawing free body diagrams and procedures for analysis. Topics include, but are not limited to, the following: introduction to engineering mechanics; equilibrium of particles and rigid bodies; structural analysis of simple trusses, frames and cables; internal forces; friction; centre of gravity and centroids; and moments of inertia. Laboratory sessions provide hands-on examples.

Prerequisite(s): PHYS 100-4 with a minimum grade of B or PHYS 110-4 with a minimum grade of D-, or PHYS 100-4 with a minimum grade of B

S-202504.82

Change(s) to Course Prerequisites – ENGR 152-1 Engineering Tools II

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the course prerequisite of ENGR 152-1 Engineering Tools II on page 236 of the 2024/2025 undergraduate calendar, be approved as proposed.

Effective Date: September 2025

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

ENGR 152-1 Engineering Tools II This course provides an introduction to engineering problem-solving using common software tools, and focusing on CAD software. Case studies provide relevance and serve to synthesize many of the topics covered in the course.

Prerequisite(s): Admission to an Engineering program, ENGR 117-3 and ENGR 151-1

S-202504.83

Change(s) to Course Prerequisites, Co-Requisites and Description – ENGR

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the changes to the ENGR course descriptions on page 236 of the 2024/25 undergraduate calendar be approved as proposed.

Effective Date: September 2025

CARRIED

ENGR 117-3 Engineering Design I This course teaches problem solving skills specific to engineering design challenges and introduces the engineering design process. Students gain experience through multiple project-based design exercises, that are complemented with relevant tours (**E**<u>e</u>.g., wastewater treatment plant) and contact with the local engineering community.

Prerequisite(s): Admission to an Engineering program

Corequisite(s) Pre-requisite(s) with concurrency: ENGR 151-1, MATH 100-3, and PHYS 110-4 (or PHYS 100-4 or PHYS 115-4), MATH 100-3, and ENGR 151-1

ENGR 151-1 Engineering Tools I This course provides an introduction to engineering problem solving using common software tools. Case studies are used to provide relevance and serve to bind together many of the topics covered in the course

Prerequisite(s): Admission to an Engineering program

Corequisite(s): Pre-requisite(s) with concurrency: ENGR 117-3, MATH 100-3, and PHYS 110-4 (or PHYS 100-4 or PHYS 115-4), MATH 100-3, and ENGR 117-3

Preclusion(s): ENSC 151-1

ENGR 210-3 Material and Energy Balances This course provides an introduction to the analysis of environmental engineering processes using the laws of conservation of mass and energy. Material and energy balances are applied to open and closed systems, non-reacting and reacting systems, and non-steady state systems.

Prerequisite(s): Admission to an Engineering program

Corequisite(s): Pre-requisite(s) with concurrency: MATH 200-3

ENGR 211-3 Engineering Communication This course builds on key principles of written and oral engineering communication. Content complements ENGR 217 Engineering Design II and includes correspondence, meeting minutes, memo<u>randa</u>e, proposals, executive summaries, technical reports, and oral presentations.

Prerequisite(s): Admission to an Engineering program and ENGR 110-3

Corequisite(s): Pre-requisite(s) with concurrency: ENGR 217-3

ENGR 220-3 Engineering Chemistry This course provides an introduction to the properties and composition of natural waters. It explores gas and solid equilibria, pH, redox chemistry, complexation, corrosion treatment, acid rain, ion exchange, colloids, and microbial transformations. This course also introduces students to concepts in organic chemistry as applicable to environmental engineering.

Prerequisite(s): Admission to an Engineering program

Pre-or Corequisite(s): Pre-requisite(s) with concurrency: CHEM 101-3, and CHEM 121-1, and ENGR 117-3, CHEM 101-3, and CHEM 121-1

S-202504.84

UNBC READY: Research Roadmap 2025-2030

Whitcombe

That on the recommendation of the Senate Committee on Academic Affairs, the UNBC READY: Research Roadmap 2025-2030 be approved as proposed.

Effective Date: Upon Approval of Senate

CARRIED

S-202504.85

UNBC Global engagement: Ready for student Success plan 2025-2029

Tavares

That on the recommendation of the Senate Committee on Academic Affairs, the UNBC Global engagement: Ready for student Success plan 2025-2029 be approved as proposed.

Effective Date: Upon Approval of Senate

CARRIED, 1 abstention

4.3 Steering Committee of Senate

Gehloff

S-202504.86

Structure and Governance - Faculty of Indigenous Studies, Social Sciences and Humanities Roberts

That on the recommendation of the Steering Committee of Senate, the changes to the Faculty of Indigenous Studies, Social Sciences and Humanities Structure and Governance document, be approved as proposed.

Effective Date: Upon Approval of Senate

CARRIED

4.4 Senate Committee on Nominations

Gehloff

"For Approval" Items:

S-202504.87

Recommendations of Senate Committee Members

Roberts

That on the recommendation of the Senate Committee on Nominations the following candidates, who have met all eligibility requirements to serve on Senate committees as indicated, be appointed as proposed.

Effective date: Upon approval of Senate

CARRIED

SENATE COMMITTEE POSITION TO BE FILLED (except as otherwise noted, all terms begin immediately)

CANDIDATE

SENATE COMMITTEE ON ACADEMIC AFFAIRS (SCAAF)

Faculty Senator Ping Bai

Term end March 31, 2027

Undergraduate Student Jared Hirt

Effective: September 1, 2025 to August 31, 2026

SENATE COMMITTEE ON ADMISSIONS AND DEGREES (SCAD)

Faculty Senator Ping Bai

Term end March 31, 2027

SENATE COMMITTEE ON HONORARY DEGREES AND OTHER FORMS OF SPECIAL RECOGNITION

Todd Whitcombe Faculty Senator

Term end March 31, 2027

Student Senator Maria Tavares

Term end August 31, 2025

Student Senator Maria Tavares

Effective: September 1, 2025 to August 31, 2026

STEERING COMMITTEE OF SENATE (SCS)

Maria Tavares Student Senator

Effective: September 1, 2025 to August 31, 2026

SENATE COMMITTEE ON INDIGENOUS INITIATIVES (SCII)

One Indigenous Graduate Student, appointed by Senate Cheri Brown

Effective: September 1, 2025 to August 31, 2026

One Indigenous Undergraduate Student, appointed by Senate Araiya J. Bernard

Effective: September 1, 2025 to August 31, 2026

SENATE COMMITTEE ON THE UNIVERSITY BUDGET (SCUB)

Student Senator Maria Tavares

Effective: September 1, 2025 to August 31, 2026

SENATE COMMITTEE ON STUDENT APPEALS (SCA)

Dhaniella Dela Rosa Undergraduate student Senator

Effective: September 1, 2025 to August 31, 2026

Rachel Fonda Student at Large

Effective: September 1, 2025 to August 31, 2026

Faculty Member Ngoc Huynh

Term end March 31, 2028

SENATE COMMITTEE ON SCHOLARSHIPS AND BURSARIES

Student Senator Araiya J. Bernard

Effective: September 1, 2025 to August 31, 2026

List of Senate Committee Vacancies was included in the meeting package.

4..5 Senate Committee on Admission and Degrees Hawes Motions .88 and .89 were moved as an omnibus motion.

S-202504.88

Changes to Admission Application Deadline - Bachelor of Education

Roberts

That on the recommendation of the Senate Committee on Admission and Degrees, the changes to the BEd program admissions deadline from January 15 to February 1 be approved as proposed.

Effective date: September 2026

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

[page 21]

Application Deadlines

January 15 February 1 Deadline to apply for the Bachelor of Education Program for the September Semester ...

[page 22]

Professional and Competitive Entry Programs

(See Program Regulations for Professional Program Admissions)

Education January 15 February 1

S-202504.89

Changes to Admission Requirements – Bachelor of Education

Roberts

That on the recommendation of the Senate Committee on Admission and Degrees, the changes to the admission requirements for the Bachelor of Education program be approved as proposed.

Effective date: September 2026

CARRIED

Proposed revision with changes underlined and deletions indicated clearly using "strikethrough":

In addition to the admission requirements described above, the following requirements must be met (see note following)_:

- 1. Successful completion, with a C+ average, of 6 credit hours of acceptable English literature and composition at any level (one of the following: (a) 3 credit hours of English literature and 3 credit hours of English composition or (b) 6 credit hours of acceptable English literature). Courses in linguistics, language study, grammar, technical or business writing, communication, or English as a Second Language are not acceptable to meet the English requirement...;
- 2. Three credit hours in Mmathematics (not including Sstatistics) with a minimum final grade of C.;
- 3. Three credit hours in a laboratory science. Laboratory science credit hours are normally selected from Bbiology, Cchemistry, Pphysical Ggeography, or Pphysics, environmental science, geology/earth science, ocean science, or astronomy.
- 4. Three credit hours of Canadian Sstudies (this course must contain significant Canadian Indigenous content), plus 3 credit hours of Canadian Hhistory or 3 credit hours of Canadian Ggeography. Credit hours will are normally be selected from Aanthropology, First Nations Sstudies, Ggeography, Hhistory, Nnorthern Sstudies, or Ppolitical Sscience courses that contain significant Canadian content (upon review, credit hours from other disciplines may be recognized as meeting the Canadian content requirement).
- 5. Submission of the completed application forms including the Experience with Children and Youth Statement (résumé format), three Confidential Reference Forms, and the Personal Statement.

Note: Applicants who do not meet the requirements in items 1-4 above but who otherwise meet the admission requirements may be admitted conditionally to the BEd program with the approval of the Chair if they have completed a minimum of 12 credit hours of the required coursework. Applicants admitted conditionally to the program under this section must complete the requirements prior to commencement of their BEd program. The UNBC School of Education is dedicated to improving educational opportunities in northern and rural areas of BC. To support this initiative, applicants living in northern and rural regions of BC (given all other application criteria are met) will be prioritized for admittance to the program.

4.6 Senate Committee on Indigenous Initiatives

Gehloff

"For Approval" Items:

S-202504.90

Federated Agreement – Wilp Wilxo'oskwhl Nisga'a Institute (WWN) and the University of Northern British Columbia Whitcombe

That on the recommendation of the Senate Committee on Indigenous Initiatives and the Senate Committee on Academic Affairs, the Federated Agreement between the Wilp Wilxo'oskwhl Nisga'a Institute (WWN) and the University of Northern British Columbia be approved as proposed.

Effective Date: Upon Signing (September 2025)

CARRIED

4.7 Senate Committee on Scholarships and Bursaries

Wood-Adams

"For Approval" Items:

S-202504.91

Tuition Waivers – Administrative Procedures

Roberts

That on the recommendation of the Senate Committee on Scholarships and Bursaries, the proposed administrative procedures for student tuition waivers be approved.

Effective Date: 2024/2025 Academic Year

CARRIED

"For Information" Items

SCSB20250326.03 (approved)

Mervin Holder Student Award

That the new Terms and Conditions for the Mervin Holder Student Award be approved.

Effective: 2025/2026 Academic Year

SCSB20250326.04 (approved)

UNBC High School Engineering Design Prize

That the new Terms and Conditions for the UNBC High School Engineering Design Prize be approved.

Effective: 2025/2026 Academic Year

SCSB20250326.07 (approved)

SCSB 2024-2025 Annual Report

That the SCSB 2024/2025 Annual Report be approved.

Effective: 2024/2025 Academic Year

5.0 Approval of Motions on the Consent Agenda

Gehloff

S-202504.92

Approval of Motions on the Consent Agenda

Tavares

That the motions on the consent agenda, except for those removed for placement on the regular agenda, be approved as presented.

Effective Date: Upon the approval of Senate

CARRIED

6.0.

S-202504.93 Move to the Closed Session

That the meeting move to Closed Session CARRIED

<u>S-202504.102</u> Whitcombe 7.0

That the Senate meeting be adjourned.

CARRIED

The meeting adjourned at 3:10pm.