NRES_798_4_201501

Probability distributions and descriptions of data

Normal random variable Probability density function

 $X \sim N(\mu, \sigma)$

Normal PDF defined by:

 μ = mean

 σ = standard deviation (σ^2 = variance)

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Normal distribution pdf
x <- seq(-2,15,0.01)
snd <- dnorm(x,mean=7,sd=1.8)
plot(x,snd,xlim=c(0,14),
 type="l",lwd=2,
 xlab="X",
 ylab="Density")</pre>

Normal random variable cumulative probability distribution

$$F(X) = \int_{-\infty}^{X} f(x) dx$$

Integral of PDF (no analytical solution)

Normal distribution cdf x <- seq(-2,15,0.01) snd <- dnorm(x,mean=7,sd=1.8) scnd <- pnorm(x,mean=7,sd=1.8) plot(x,scnd,xlim=c(0,14), type="l",lwd=2, xlab="X", ylab="Density") points(x,snd,type="l",col="red")

Normal distribution examples

• Standard normal distribution 0,1

Properties of normal distributions

- 1. Normal distributions can be added and the result is a normal distribution
- 2. Normal distributions can be transformed with shift and change of scale operations
 - and a normal distribution is retained
- Any normal distribution can be transformed into the standard normal distribution through shift and change of scale operations

Normal distribution transformations

- $X \sim N(\mu, \sigma)$ Y = aX + b
- Shift: a = 1, b != 0
 Move random
 - variable over b units
- Scale: a != 1, b = 0
 One unit of X
 - becomes a units of Y

Transforme Normal distributions pdf
par(mfrow=c(3,1))
x <- rnorm(1000,2,1)
hist(x,xlim=c(0,15),ylim=c(0,0.4),
 prob=TRUE,col="gray92",
 main="")
a = 2; b = 5
y1 <- a*x + 0 # scale
y2 <- 1*x + b # shift
hist(y2,xlim=c(0,15),ylim=c(0,0.4),
 prob=TRUE,col="red",
 main="")
hist(y1,xlim=c(0,15),ylim=c(0,0.4),
 prob=TRUE,col="blue",
 main="")</pre>

Central limit theorem

- Ubiquity of Normal Distribution due to the Central Limit Theorem
- Most classical statistics are premised on a normal distribution due to the central limit theorem (ANOVA, regression, etc.)

Central Limit Theorem

- Central Limit Theorem says that if you add a "large" number of independent samples from the same distribution (binomial, Poisson, gamma etc.), the distribution of the sums will be approximately normal
 - Standardizing the resulting distribution will produce a new random variable that is close to one that has a standard normal distribution
- "Large" varies between distributions and conditions but can be reasonably small (>5)
- The central limit theorem does not mean that "all samples with large numbers are normal".

Central Limit Theorem

Allows us to use statistics that are premised on a normal distribution even though the underlying (root) random variables may themselves not be normally distributed!

- # prey caught by individual represents a Poisson random distribution
- Sample the # of prey caught by multiple individuals in two populations
- Distribution of observed # prey caught in the two populations will approach a normal distribution

Log-normal distribution $f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}$

Log normal distribution x <- seq(0,5,0.01) ln1 <- dlnorm(x,meanlog =0, sdlog =1) ln2 <- dlnorm(x,meanlog =0, sdlog =0.5) ln3 <- dlnorm(x,meanlog =0, sdlog =1.8) plot(x,ln3,col="black",type="l", xlab="X",ylab="Density",lwd=2) points(x,ln2,col="blue",type="l",lwd=2) points(x,ln1,col="red",type="l",lwd=2)

• Why is Log-normal often observed in biological systems?

Exponential distribution (negative exponential distribution)

 Describes time between events in a Poisson process

Exponential distribution x <- seq(0,5,0.01) e1 <- dexp(x, rate = 0.5) e2 <- dexp(x, rate = 1) e3 <- dexp(x, rate = 1.5) plot(x,e1,col="red",type="l", ylim=c(0,1.5), xlab="X",ylab="Density",lwd=2) points(x,e2,col="blue",type="l",lwd=2) points(x,e3,col="black",type="l",lwd=2)

Weibull distribution

• Often used in survival analysis (time to death of organism)

Gama distribution

Characterizing distributions

- Location and spread
 - Location: Mean, median, mode
 - Spread: variance, standard deviation, standard error
- Distribution characteristics
 - Central moments
 - Arithmetic mean (first moment)
 - Variance (second moment)
 - Skewness (third moment)
 - Kurtosis (fourth moment)

Location: quick refresher

- Mean (arithmetic)
 - Arithmetic average of a distribution (set of values)

$$\overline{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$$

- Unbiased estimator of μ if:
 - Randomly selected individuals
 - Samples independent
 - Samples drawn from a larger population described by a normal random variable
- Median
 - Value separating the higher half of a data set from the lower half
- Mode
 - The value (observation) that occurs most often in a data set
 - For symmetric distribution mean ≈ median ≈ mode
 - Median and mode useful when data doesn't conform to a standard distribution

Spread: quick refresher

- Variance
 - Measure of how far observed values from a random variable differ from the expected E(X) value
 - PFD variance

$$Var(x) = \sigma^2 = \int (x - \mu)^2 f(x) dx$$

– Estimated population variance

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}$$

Standard deviation

$$s = \sqrt{s^2}$$

Standard error

$$s_{\bar{Y}} = \frac{s}{\sqrt{n}}$$

- Sum of squares
 - Regression, ANOVA
- Degrees of freedom
 - # independent data points that we can use for estimation

Central moments

- A **moment** is quantitative measure of the shape of a set of points.
- Moments about a random variables mean are central moments
- Evaluating moments is one of the easiest ways to characterize and distinguish probability distributions
- Arithmetic mean: first moment
- Variance: second central moment
- Skewness: third central moment
- Kurtosis: fourth central moment

Skewness (third central moment)

• Central moment (general)

$$CM = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \overline{Y})^r$$

- r = 1 arithmetic mean
- r = 2 variance

Third central moment

$$g_1 = \frac{1}{ns^3} \sum_{i=1}^n (Y_i - \bar{Y})^3$$

- How the sample differs in shape from a symmetrical distribution
 - $-g_1 > 0$ is right skewed
 - $-g_1 < 0$ is left skewed

Skewness

Positive skew Right skewed mean > mode

Kurtosis

• Fourth central moment

$$g_2 = \left[\frac{1}{ns^4} \sum_{i=1}^n (Y_i - \bar{Y})^4\right] - 3$$

- Represents the extent to which data is distributed in the tails vs. the center of the distribution
 - $-g_2 < 0$ is leptokurtic, more probability in the tails
 - $-g_2 > 0$ is platykurtic, less probability in the tails

Kurtosis

Quantiles

- Another measure of spread
- Point where a defined % of measured data has a smaller value
- Median (50th percentile)
- Upper and lower quartiles (25th and 75th percentiles)
- Upper and lower deciles (10th and 90th percentiles)
- Provides easily accessible information about a distribution
- More meaningful way to describe data that is asymmetric or contains a large number of extreme values

Quantiles

Quantiles data(trees) boxplot(trees)

Outliers

- Data points that are distant from other observations
- Hawkins 1980: "An outlier is an observation which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism"
- "flag" for potential problem
- Error or true variation
 - Recording error: coding error, measurement error
 - Remove or fix
 - True variation: distribution characteristic or other biological process

Data exploration (raw)

- Dependent and independent variables
- Plot all data
 - Individual variables
 - Scatter plots (relationships between variables)
- Histograms
- Boxplot
- Mean, median, mode
- Skew and Kurtosis

Data distribution problems

- Transformations?
 - What transformation best?
 - How should the results be interpreted?
 - Ideally statistical model relates directly to ecological process (i.e. measuring and understanding real ecological parameters)
- Different distribution used for statistical test
 - E.g. count data seems to be Poisson distributed
 - Use Poisson regression (log-linear regression model)
 - Generalized linear models
 - E.g. Zero-inflated negative binomial (species count data)

Data exploration

- What type of distribution am I expecting?
- What type of random variable(s) would I expect from the ecological processes I am interested in?
- What other forms of variation (uncertainty) are included in my data (can these be accounted for)?
- Does the statistical hypothesis that I am able to test, correspond to the ecological hypothesis (model) that I want to test?