NRES_798_4_201501

Probability distributions
and descriptions of data

Normal random variable Probability density function

$$
X \sim N(\mu, \sigma)
$$

Normal PDF defined by:

$$
\mu=\text { mean }
$$

$\sigma=$ standard deviation ($\sigma^{2}=$ variance)

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

\# Normal distribution pdf
$x<-\operatorname{seq}(-2,15,0.01)$
snd <- dnorm(x, mean=7,sd=1.8)
plot(x,snd,xlim=c(0,14),
type="I",lwd=2,
xlab="X",
ylab="Density")

Normal random variable cumulative probability distribution

$$
F(X)=\int_{-\infty}^{x} f(x) d x
$$

- Integral of PDF (no analytical solution)

Normal distribution examples

- Standard normal distribution 0,1

\# Standard Normal distribution pdf
$x<-$ seq(-5,5,0.01)
snd <- dnorm (x, mean=0,sd=1)
plot(x, snd, x lim $=c(-4,4)$,
type="I",lwd=2,
xlab="X",
ylab="Density")

Properties of normal distributions

1. Normal distributions can be added and the result is a normal distribution
2. Normal distributions can be transformed with shift and change of scale operations

- and a normal distribution is retained

3. Any normal distribution can be transformed into the standard normal distribution through shift and change of scale operations

Normal distribution transformations

$$
\begin{aligned}
X & \sim N(\mu, \sigma) \\
Y & =\mathrm{aX}+\mathrm{b}
\end{aligned}
$$

- Shift: $a=1, b$! $=0$
- Move random variable over b units
- Scale: $a!=1, b=0$
- One unit of X becomes a units of Y
\# Transforme Normal distributions pdf
par(mfrow=c(3,1))
$x<-\operatorname{rnorm}(1000,2,1)$
hist($x, x \lim =c(0,15)$,ylim=c($0,0.4$), prob=TRUE,col="gray92",
main="")
$a=2 ; b=5$
$y 1<-a^{*} x+0$ \# scale
$y 2<-1^{*} x+b$ \# shift
hist(y2,xlim=c(0,15),ylim=c(0,0.4), prob=TRUE,col="red", main="")
hist($y 1, x \lim =c(0,15), y \lim =c(0,0.4)$, prob=TRUE,col="blue", main="")

Central limit theorem

- Ubiquity of Normal Distribution due to the Central Limit Theorem
- Most classical statistics are premised on a normal distribution due to the central limit theorem (ANOVA, regression, etc.)

Central Limit Theorem

- Central Limit Theorem says that if you add a "large" number of independent samples from the same distribution (binomial, Poisson, gamma etc.) , the distribution of the sums will be approximately normal
- Standardizing the resulting distribution will produce a new random variable that is close to one that has a standard normal distribution
- "Large" varies between distributions and conditions but can be reasonably small (>5)
- The central limit theorem does not mean that "all samples with large numbers are normal".

Central Limit Theorem

Allows us to use statistics that are premised on a normal distribution even though the underlying (root) random variables may themselves not be normally distributed!

- \# prey caught by individual represents a Poisson random distribution
- Sample the \# of prey caught by multiple individuals in two populations
- Distribution of observed \# prey caught in the two populations will approach a normal distribution

Log-normal distribution

$$
f(x)=\frac{1}{x \sigma \sqrt{2 \pi}} e^{-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}}
$$

\# Log normal distribution

 $x<-\operatorname{seq}(0,5,0.01)$In1 <- dlnorm(x,meanlog $=0$, sdlog =1)
In2 <- dlnorm(x,meanlog $=0$, sdlog $=0.5$)
$\ln 3<-$ dlnorm (x, meanlog $=0$, sdlog $=1.8$)
plot(x,ln3,col="black",type="I",
xlab="X",ylab="Density",lwd=2)
points(x,ln2,col="blue",type="I",lwd=2) points(x,ln1,col="red",type="I",lwd=2)

- Why is Log-normal often observed in biological systems?

Exponential distribution (negative exponential distribution)

- Describes time between events in a Poisson process


```
# Exponential distribution
x<- seq(0,5,0.01)
e1 <- dexp(x, rate = 0.5)
e2 <- dexp(x, rate = 1)
e3 <- dexp(x, rate = 1.5)
plot(x,e1,col="red",type="l",
    ylim=c(0,1.5),
    xlab="X",ylab="Density",lwd=2)
points(x,e2,col="blue",type="l",lwd=2)
points(x,e3,col="black",type="l",lwd=2)
```


Weibull distribution

\#Weibull distribution
x <- seq(0,3.5,0.01)
\#0.5,1,1.5,5
w1 <-dweibull(x,shape=0.5)
w2 <-dweibull(x,shape=1)
w3 <-dweibull(x,shape=1.5)
w4 <-dweibull(x,shape=5)
plot(x,w1,col="red",type="I", ylim $=c(0,2.5)$,
xlab="X",ylab="Density",lwd=2)
points(x,w2,col="blue",type="I",lwd=2) points(x,w3,col="green",type="I",lwd=2) points(x,w4,col="black",type="I",lwd=2)

- Often used in survival analysis (time to death of organism)

Gama distribution

\#Gamma distribution
$x<-\operatorname{seq}(0,10,0.1)$
g1 <- dgamma(x,shape=1,scale=2)
g2 <- dgamma(x,shape=3,scale = 2)
g3 <- dgamma (x,shape $=1$, scale $=1$)
g4 <- dgamma(x,shape=3,scale = 1)
plot($x, g 1, c o l=" r e d ", t y p e=" I "$,
ylim=c(0,1),
xlab="X",ylab="Density",lwd=2) points($x, g 2$, col="blue",type="I",lwd=2) points(x,g3,col="green",type="I",lwd=2) points(x,g4,col="black",type="I",lwd=2)

Characterizing distributions

- Location and spread
- Location: Mean, median, mode
- Spread: variance, standard deviation, standard error
- Distribution characteristics
- Central moments
- Arithmetic mean (first moment)
- Variance (second moment)
- Skewness (third moment)
- Kurtosis (fourth moment)

Location: quick refresher

- Mean (arithmetic)
- Arithmetic average of a distribution (set of values)

$$
\bar{Y}=\frac{\sum_{i=1}^{n} Y_{i}}{n}
$$

- Unbiased estimator of μ if:
- Randomly selected individuals
- Samples independent
- Samples drawn from a larger population described by a normal random variable
- Median
- Value separating the higher half of a data set from the lower half
- Mode
- The value (observation) that occurs most often in a data set
- For symmetric distribution mean \approx median \approx mode
- Median and mode useful when data doesn't conform to a standard distribution

Spread: quick refresher

- Variance
- Measure of how far observed values from a random variable differ from the expected $E(X)$ value
- PFD variance

$$
\operatorname{Var}(x)=\sigma^{2}=\int(x-\mu)^{2} f(x) d x
$$

- Estimated population variance

$$
s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

- Standard deviation

$$
s=\sqrt{s^{2}}
$$

- Standard error

- Sum of squares
- Regression, ANOVA
- Degrees of freedom
- \# independent data points that we can use for estimation

$$
s_{\bar{Y}}=\frac{s}{\sqrt{n}}
$$

Central moments

- A moment is quantitative measure of the shape of a set of points.
- Moments about a random variables mean are central moments
- Evaluating moments is one of the easiest ways to characterize and distinguish probability distributions
- Arithmetic mean: first moment
- Variance: second central moment
- Skewness: third central moment
- Kurtosis: fourth central moment

Skewness (third central moment)

- Central moment (general)

$$
C M=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{r}
$$

$$
r=1 \text { arithmetic mean }
$$

$$
r=2 \text { variance }
$$

- Third central moment

$$
g_{1}=\frac{1}{n s^{3}} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{3}
$$

- How the sample differs in shape from a symmetrical distribution
$-\mathrm{g}_{1}>0$ is right skewed
$-\mathrm{g}_{1}<0$ is left skewed

Skewness

Positive skew Right skewed mean > mode

\#Skewness

\#install.packages("moments") \# package e1071
\#library(moments)
x <- seq(-1,10,0.01)
g1 <- dlnorm($x, 1,0.25$)
g2 <- dlnorm($x, 1,0.5$)
plot(x,g1,col="black",type="I",
xlab="X",ylab="Density",lwd=3)
points(x,g2,type="I",col="red",lwd=3)
skewness(rlnorm(1000,1,0.25))
skewness(rlnorm(1000,1,0.5))

Kurtosis

- Fourth central moment

$$
g_{2}=\left[\frac{1}{n s^{4}} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{4}\right]-3
$$

- Represents the extent to which data is distributed in the tails vs. the center of the distribution
$-g_{2}<0$ is leptokurtic, more probability in the tails
$-\mathrm{g}_{2}>0$ is platykurtic, less probability in the tails

Kurtosis

Quantiles

- Another measure of spread
- Point where a defined \% of measured data has a smaller value
- Median (50 ${ }^{\text {th }}$ percentile)
- Upper and lower quartiles ($25^{\text {th }}$ and $75^{\text {th }}$ percentiles)
- Upper and lower deciles ($10^{\text {th }}$ and $90^{\text {th }}$ percentiles)
- Provides easily accessible information about a distribution
- More meaningful way to describe data that is asymmetric or contains a large number of extreme values
- Box plot

Quantiles

\# Quantiles
data(trees)
boxplot(trees)

Outliers

- Data points that are distant from other observations
- Hawkins 1980: "An outlier is an observation which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism"
- "flag" for potential problem
- Error or true variation
- Recording error: coding error, measurement error
- Remove or fix
- True variation: distribution characteristic or other biological process

Data exploration (raw)

- Dependent and independent variables
- Plot all data
- Individual variables
- Scatter plots (relationships between variables)
- Histograms
- Boxplot
- Mean, median, mode
- Skew and Kurtosis

Data distribution problems

- Transformations?
- What transformation best?
- How should the results be interpreted?
- Ideally statistical model relates directly to ecological process (i.e. measuring and understanding real ecological parameters)
- Different distribution used for statistical test
- E.g. count data seems to be Poisson distributed
- Use Poisson regression (log-linear regression model)
- Generalized linear models
- E.g. Zero-inflated negative binomial (species count data)

Data exploration

- What type of distribution am l expecting?
- What type of random variable(s) would I expect from the ecological processes I am interested in?
- What other forms of variation (uncertainty) are included in my data (can these be accounted for)?
- Does the statistical hypothesis that I am able to test, correspond to the ecological hypothesis (model) that I want to test?

