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Probability distributions

and descriptions of data



Normal random variable

Probability density function

Normal PDF defined by:

μ = mean

σ = standard deviation   (σ2 = variance) 
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μ = 7

σ = 1.8

# Normal distribution pdf

x <- seq(-2,15,0.01)

snd <- dnorm(x,mean=7,sd=1.8)

plot(x,snd,xlim=c(0,14),

type="l",lwd=2,

xlab="X",

ylab="Density")



Normal random variable

cumulative probability distribution

• Integral of PDF (no analytical solution)
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# Normal distribution cdf

x <- seq(-2,15,0.01)

snd <- dnorm(x,mean=7,sd=1.8)

scnd <- pnorm(x,mean=7,sd=1.8)

plot(x,scnd,xlim=c(0,14),

type="l",lwd=2,

xlab="X",

ylab="Density")

points(x,snd,type="l",col="red")



Normal distribution examples

• Standard normal distribution  0,1

# Standard Normal distribution pdf

x <- seq(-5,5,0.01)

snd <- dnorm(x,mean=0,sd=1)

plot(x,snd,xlim=c(-4,4),

type="l",lwd=2,

xlab="X",

ylab="Density")



Properties of normal distributions

1. Normal distributions can be added and the 

result is a normal distribution

2. Normal distributions can be transformed 

with shift and change of scale operations

– and a normal distribution is retained

3. Any normal distribution can be transformed 

into the standard normal distribution 

through shift and change of scale operations



Normal distribution transformations

• Shift: a = 1, b != 0

– Move random 
variable over b units

• Scale: a != 1, b = 0

– One unit of X 
becomes a units of Y

�	~	���, ��
Y = aX + b

# Transforme Normal distributions pdf

par(mfrow=c(3,1))

x <- rnorm(1000,2,1)

hist(x,xlim=c(0,15),ylim=c(0,0.4),

prob=TRUE,col="gray92",

main="")

a = 2; b = 5

y1 <- a*x + 0  # scale

y2 <- 1*x + b  # shift

hist(y2,xlim=c(0,15),ylim=c(0,0.4),

prob=TRUE,col="red",

main="")

hist(y1,xlim=c(0,15),ylim=c(0,0.4),

prob=TRUE,col="blue",

main="")

a = 0

b = 5

a = 2

b = 0



Central limit theorem

• Ubiquity of Normal Distribution due to the 

Central Limit Theorem

• Most classical statistics are premised on a 

normal distribution due to the central limit 

theorem (ANOVA, regression, etc.)



Central Limit Theorem

• Central Limit Theorem says that if you add a “large” 
number of independent samples from the same 
distribution (binomial, Poisson, gamma etc.) , the 
distribution of the sums will be approximately normal

– Standardizing the resulting distribution will produce a new 
random variable that is close to one that has a standard 
normal distribution

• “Large” varies between distributions and conditions 
but can be reasonably small (>5)

• The central limit theorem does not mean that “all 
samples with large numbers are normal”.



Central Limit Theorem

Allows us to use statistics that are premised on a normal 
distribution even though the underlying (root) random 
variables may themselves not be normally distributed!

• # prey caught by individual represents a Poisson random 
distribution

• Sample the # of prey caught by multiple individuals in 
two populations

• Distribution of observed # prey caught in the two 
populations will approach a normal distribution



Log-normal distribution

• Why is Log-normal often observed in biological systems?
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σ = 1

σ = 0.5

σ = 1.8

# Log normal distribution

x <- seq(0,5,0.01)

ln1 <- dlnorm(x,meanlog =0, sdlog =1)

ln2 <- dlnorm(x,meanlog =0, sdlog =0.5)

ln3 <- dlnorm(x,meanlog =0, sdlog =1.8)

plot(x,ln3,col="black",type="l",

xlab="X",ylab="Density",lwd=2)

points(x,ln2,col="blue",type="l",lwd=2)

points(x,ln1,col="red",type="l",lwd=2)



Exponential distribution

(negative exponential distribution)

• Describes time between events in a Poisson 

process

# Exponential distribution

x <- seq(0,5,0.01)

e1 <- dexp(x, rate = 0.5)

e2 <- dexp(x, rate = 1)

e3 <- dexp(x, rate = 1.5)

plot(x,e1,col="red",type="l",

ylim=c(0,1.5),

xlab="X",ylab="Density",lwd=2)

points(x,e2,col="blue",type="l",lwd=2)

points(x,e3,col="black",type="l",lwd=2)

λ = 0.5

λ = 1

λ = 1.5



λ = 1, k = 0.5

λ = 1, k = 1

λ = 1, k = 1.5

λ = 1, k = 5

Weibull distribution

• Often used in survival analysis (time to death of organism)

#Weibull distribution

x <- seq(0,3.5,0.01)

#0.5,1,1.5,5

w1 <-dweibull(x,shape=0.5)

w2 <-dweibull(x,shape=1)

w3 <-dweibull(x,shape=1.5)

w4 <-dweibull(x,shape=5)

plot(x,w1,col="red",type="l",

ylim=c(0,2.5),

xlab="X",ylab="Density",lwd=2)

points(x,w2,col="blue",type="l",lwd=2)

points(x,w3,col="green",type="l",lwd=2)

points(x,w4,col="black",type="l",lwd=2)



k = 1, θ = 2

k = 3, θ = 2

k = 1, θ = 1

k = 3, θ = 1

#Gamma distribution

x <- seq(0,10,0.1)

g1 <- dgamma(x,shape=1,scale=2)

g2 <- dgamma(x,shape=3,scale = 2)

g3 <- dgamma(x,shape=1, scale = 1)

g4 <- dgamma(x,shape=3,scale = 1)

plot(x,g1,col="red",type="l",

ylim=c(0,1),

xlab="X",ylab="Density",lwd=2)

points(x,g2,col="blue",type="l",lwd=2)

points(x,g3,col="green",type="l",lwd=2)

points(x,g4,col="black",type="l",lwd=2)

Gama distribution



Characterizing distributions

• Location and spread

– Location: Mean, median, mode

– Spread: variance, standard deviation, standard error

• Distribution characteristics

– Central moments

• Arithmetic mean (first moment)

• Variance (second moment)

• Skewness (third moment)

• Kurtosis (fourth moment)



Location: quick refresher
• Mean (arithmetic)

– Arithmetic average of a distribution 
(set of values)

– Unbiased estimator of μ if:
• Randomly selected individuals

• Samples independent

• Samples drawn from a larger 
population described by a normal 
random variable

• Median

– Value separating the higher half of a 
data set from the lower half

• Mode

– The value (observation) that occurs 
most often in a data set

– For symmetric distribution mean ≈ 
median ≈ mode

– Median and mode useful when data 
doesn’t conform to a standard 
distribution
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Spread: quick refresher
• Variance

– Measure of how far observed 
values from a random variable 
differ from the expected E(X) 
value

– PFD variance

– Estimated population variance

• Standard deviation

• Standard error
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s2 = 0.5

s2 = 1

s2 = 2

• Sum of squares

• Regression, ANOVA

• Degrees of freedom

• # independent data 

points that we can use 

for estimation



Central moments
• A moment is quantitative measure of the shape 

of a set of points.

• Moments about a random variables mean are 
central moments

• Evaluating moments is one of the easiest ways to 
characterize and distinguish probability 
distributions

• Arithmetic mean: first moment

• Variance: second central moment

• Skewness: third central moment

• Kurtosis: fourth central moment



Skewness (third central moment)

• Central moment (general)

• Third central moment

• How the sample differs in shape from a symmetrical 
distribution

– g1 > 0 is right skewed

– g1 < 0 is left skewed
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r = 1 arithmetic mean

r = 2 variance



Skewness

Positive skew

Right skewed

mean > modeg1 = 0.77

g1 = 1.99

#Skewness

#install.packages("moments") # package e1071

#library(moments)

x <- seq(-1,10,0.01)

g1 <- dlnorm(x,1,0.25)

g2 <- dlnorm(x,1,0.5)

plot(x,g1,col="black",type="l",

xlab="X",ylab="Density",lwd=3)

points(x,g2,type="l",col="red",lwd=3)

skewness(rlnorm(1000,1,0.25))

skewness(rlnorm(1000,1,0.5))



Kurtosis

• Fourth central moment

• Represents the extent to which data is 
distributed in the tails vs. the center of the 
distribution

– g2 < 0 is leptokurtic, more probability in the tails

– g2 > 0 is platykurtic, less probability in the tails
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Kurtosis

g2 = 0 g2 > 0

Fat tails 

g2 < 0

Skinny tails 



Quantiles

• Another measure of spread

• Point where a defined % of measured data has a 
smaller value

• Median (50th percentile)

• Upper and lower quartiles (25th and 75th percentiles)

• Upper and lower deciles (10th and 90th percentiles)

• Provides easily accessible information about a 
distribution

• More meaningful way to describe data that is 
asymmetric or contains a large number of extreme 
values



Quantiles
• Box plot

# Quantiles

data(trees)

boxplot(trees)

Outlier

Max

3rd quartile

Median

1st quartile

25% quantile



Outliers
• Data points that are distant from other observations

• Hawkins 1980: “An outlier is an observation which deviates so much 
from other observations as to arouse suspicions that it was 
generated by a different mechanism”

• “flag” for potential problem

• Error or true variation

– Recording error: coding error, measurement error 
• Remove or fix

– True variation: distribution characteristic or other biological process



Data exploration (raw)

• Dependent and independent variables

• Plot all data

– Individual variables

– Scatter plots (relationships between 
variables)

• Histograms

• Boxplot

• Mean, median, mode

• Skew and Kurtosis



Data  distribution problems

• Transformations?
– What transformation best?

– How should the results be interpreted?

– Ideally statistical model relates directly to ecological process 
(i.e. measuring and understanding  real ecological parameters)

• Different distribution used for statistical test
– E.g. count data seems to be Poisson distributed

– Use Poisson regression (log-linear regression model)

– Generalized linear models

– E.g. Zero-inflated negative binomial (species count data)



Data exploration

• What type of distribution am I expecting?

• What type of random variable(s) would I expect 

from the ecological processes I am interested in?

• What other forms of variation (uncertainty) are 

included in my data (can these be accounted for)?

• Does the statistical hypothesis that I am able to 

test, correspond to the ecological hypothesis 

(model) that I want to test?


