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Review of probability and
distributions



Outline

Discrete random variables

— Bernoulli

— Binomial

— Poisson

— Negative Binomial
Continuous random variables
— Uniform distribution

— Normal distribution

Central Limit Theorem

Other Continuous random variables
— Log-normal distribution
— Exponential



Bernoulli Random variable

* Event with only 2 outcomes
* Pitcher plant

— Event: visit

— Set: capture, escape

Nepenthes sp.

— Assumes visits independent
e Habitat suitability

— Random sample of quadrats with species being
present or absent.



Bernoulli Random variable

* Bernoulli distribution
— Probability of success P(X=1)=p
— Probability of failure P(X=0=1-p (first axiom)
— X has a Bernoulli distribution with parameter P

X ~ Bernoulli(p)

* Single event or observation distributed as a
Bernoulli random variable



Binomial distribution

e Pitcher plant
— Observe 1000 events (visits)

— Events are independent and identically distributed
random variables each with parameter p

- n=(0,1,0,0,1,0...)

— Number of captures

— X =364 = count of number of successes from n trails
— Random variable X is a binomial distribution

X ~ Binomial(n,p)

— Read as: X number of successes in n Bernoulli trials
based on p

Pr(X = k) = () p*(1 —p)"*



Binomial probability mass function

Pr(X = k) = () p*(1 —p)"*

Probability mass function: the probability that a
discreet random variable is exactly equal to some

value
* Binomial coefficient: “n choose k”

!
(k) = 7 (nn— k)!

* How many ways can k success be obtained from n
trails



Binomial probability mass function

What is the probability of observing 2 successes in 5 trials if the Bernoulli p = 0.5

Probability of 2 independent successes: 0.52 = 0.25

(Z) pk(1 — p)"* = Pr(X = k) = 0.3125
\ J

Y\ Probability of 3 independent failures: (1-0.5)5-2)= 0.125

10 = Number of ways 2 successes can result from 5 trails

(11000) (01100) (00110) (00011)
(10100) (01010) (00101)
(10010) (01001)

(10001)



Probability

Binomial probability mass function
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* Exact probabilities can be easily calculated
* When p = 0.5, probability distribution symmetric
e Shape of distribution depends on N and P



Poisson distribution

* Poisson: the number of individuals, arrivals,
events, counts, etc., in a given time/space unit
of counting effort.

— Number of seeds/seedling falling in a gap

— Number of offspring produced in a season (if the
number of breeding attempts is not recorded)

— Number of prey caught per unit time

e Often used when number of counts is small



Poisson distribution
X ~ Poisson(A)

Distribution described by single parameter
amda (A)

lamda is the average number of occurrences
in each sample




Poisson Probability mass function

X

P(x) = Fe‘l

 What is the probability of observing 3 birds in
a 625 m? patch if the average number of birds
is hypothesized to be 2

e X=3,A=2



Poisson

When A is small (< 1) the distribution has a strong
“reverse-j” shape

When the expected number of counts gets large
(A > 10) the Poisson becomes approximately
normal

A sometimes referred to as a rate parameter
because it can describe the frequency of rate
events in time

Poisson has no upper limit (0, unlimited)
Variance of the Poisson is equal to its mean



P(X)
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Poisson distribution with different A
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# Poisson distribution
X <-¢(0:12)
lamda<-8#0.1,0.5,1,2,3,8
p <- dpois(x,lamda)
barplot(p,axes = TRUE,
names.arg =x,
ylim=c(0,max(p)+0.1),
ylab = "P(X)"
)
mtext(paste("lamda = ",lamda),side=3,
outer=FALSE,line=-3,cex=1.5)



Negative binomial distribution

 The negative binomial counts the number of
failures before a predetermined number of

SUccess occurs
— Remember the binomial is number of successes in a
fixed number of trials

— Discrete, similar to the Poisson, but variance can be
larger than its mean (can be over dispersed, which can

valuable for ecological data)

* |n ecology it is sometimes used because it is a
good phenomenological description of a
clustered distribution with no upper limit, and
more variance than the Poisson.



Negative binomial distribution

X ~NB(r;p)

* pisthe probability of success per trail
(Bernoulli random variable)

* ris the predefined number of successes that
need to be observed



Negative binomial probability mass
function

k —1)!
Pr(X = k) = (( k;:_ 1)!) ) p*(1—p)

e For k> 10the NB resembles the Poisson

e k often <1 when used in ecological applications



P(X)
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Examples of negative binomial
distributions
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# Negative binomial distribution

X <-¢(0:12)

k<-10

#nbp <- dnbinom(x,size=1,prob = 0.2)

nbp <- dnbinom(x,size=k,mu=1)

barplot(nbp,axes = TRUE,
names.arg = x,
ylim=c(0,max(nbp)+0.1),
ylab ="P(X)"
)

mtext(paste("k = ",k),side=3,
outer=FALSE,line=-3,cex=1.5)



Discrete vs. continuous
random variables

e Discrete random variables
— Presence vs. absence
— Count data, integers, e.g. 1,4,7
— E.g. # offspring, # prey captured, # species

e Continuous random variables
— Can have values within an interval
— Real numbers, e.g. 1.74, 14.9

— E.g. spine length, N concentration in soil, body mass,
pesticide concentration in fish tissue



Discrete random variables

Exact probability mass function can be calculated for each count
expectation

E.g. probability of observing a count of 2 =0.72

lamda = 2
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With continuous random variables we can not identify all the
possible events or outcomes

For continuous random variables a specific probability can not be
directly calculated for each measured value

E.g. probability of observing a body mass of 67.34 kg
Use probability density functions

Constructed by getting the probability that a measurement occurs
within a sub interval (e.g. p(67.3 < x <67.4))



Calculating probability distributions of
continuous variables

Probability of observing a wing
length of 14.86cm?

 Assume max wing length = 20cm

Ocm 20 cm

* Assume any wing length between

0 and 20cm is equally likely to 10¢cm

ocCcur. ¢ ‘ ‘

_ _ 0<X<10 10<X<20
Ho: Wing length x is between
P=0.5 P=0.5
0 and 10cm

Discrete intervals have defined SR I Y I N

probabilities



Uniform random variable

Assume a closed unit interval (real number bounded by: 0 < x < 10)
This interval can be divided into sub-intervals

Within a closed interval the probability of a value occurring within a
subinterval can be defined (interval = 0:1)

In a continuous sample space, all the probabilities of events must still sum
to 1 (first axiom)

# Uniform distribution PDF

x <- seq(0,10,0.1)

updf <- dunif(x,min=0,max=10)

plot(x,updf,ylim=c(0,1),
type="I",xlim=c(0,10),
ylab="P(X)")

P(X)
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Probability density function (PDF)
Probability of x occurring in interval | is given by the area under the curve
Total area under the curved described by a PDF =1

) = {1/10,0 <x <10

0 otherwise
What are ecological examples of a uniform random variable?



Uniform variable
cumulative distribution function

* Probability that a random variable X is less
than or equal to a value y.

o |

@ e # Uniform distribution CDF

g x <- seq(0,10,0.1)
ucdf <- punif(x,0,10)

= plot(x,ucdf,ylim=c(0,1),
F (y) — P (X < y) g type="1",xlim=c(0,10),

< ylab="P(X)",col="red")

© points(x,updf,type="1",

col="black")
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 CDF is the area under the PDF forx<y



Normal random variables
(Gaussian)

e (QObservations clustered around a central value
* Long tails (infinite in the PDF)
e Distribution is approximately symmetrical
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/ \ # Normal distribution
‘.f ' rN <- rnorm(1000,mean=0,sd =1)
% ™ f-‘"l hist(rN,main="",
g ©° ;"'I‘ \ xlab="0Observed values",
a i \ col="grey92",prob=TRUE)
curve(dnorm(x,mean=0,sd=1),
S \ add=TRUE,col="red")
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Observed values

* Assumptions of normal distributions are the basis of many statistical tests
— Regression, ANOVA

* Ecological examples of normal distributions?



Normal variable
Probability density function

X ~N(u,o)
Normal PDF defined by:
L= mean
o = standard deviation (o?= variance)
1 _1(x—_u)2
f(x) = 5o 2\

&
S
w0 # Normal distribution pdf
u = 7 = x <- seq(-2,15,0.01)
= snd <- dnorm(x,mean=7,sd=1.8)
| = o .
= o 5 plot(x,snd,xlim=c(0,14),
o 1 ) 8 type="1",Ilwd=2,
pre] xlab="X",
= ylab="Density")
(o ]
g L I
0 2 4 6 8 10 12 14




Normal variable
cumulative probability distribution

X
F(X) = ff(x)dx

* |ntegral of PDF (no analytical solution)

1.0

08

# Normal distribution cdf
x <- seq(-2,15,0.01)

g snd <- dnorm(x,mean=7,sd=1.8)
scnd <- pnorm(x,mean=7,sd=1.8)
< plot(x,scnd,xlim=c(0,14),
o type="1",lwd=2,
xlab="X",
~ ylab="Density")
o points(x,snd,type="1",col="red")
o
o




Normal distribution examples

e Standard normal distribution 0,1

Density

1
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# Standard Normal distribution pdf
x <- seq(-5,5,0.01)

— snd <- dnorm(x,mean=0,sd=1)

plot(x,snd,xlim=c(-4,4),
type="1",lwd=2,
xlab="X",

| ylab="Density")




Properties of normal distributions

1. Normal distributions can be added and the
result is a normal distribution

2. Normal distributions can be transformed
with shift and change of scale operations
— and a normal distribution is retained

3. Any normal distribution can be transformed

into the standard normal distribution
through shift and change of scale operations



Normal distribution transformations

X ~N(u,o)
Y=aX+b

e Shift:a=1,b!=0
— Move random ' .
variable over b units

e Scale:a!l=1,b=0

— One unit of X
becomes a units of Y
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# Transforme Normal distributions pdf 0 s 10 15

par(mfrow=c(3,1)) y2

X <- rnorm(1000,2,1)

hist(x,xlim=c(0,15),ylim=c(0,0.4),
prob=TRUE,col="gray92",
main="")

a=2;b=5

yl<-a*x+0 #scale

y2 <-1*x + b # shift

hist(y2,xlim=c(0,15),ylim=c(0,0.4),
prob=TRUE,col="red",
main="") 0 5 10 15

hist(y1,xlim=c(0,15),ylim=c(0,0.4),
prob=TRUE,col="blue",
main="")
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Central limit theorem

e Ubiquity of Normal Distribution due to the
Central Limit Theorem

* Most classical statistics are premised on a
normal distribution due to the central limit
theorem (ANOVA, regression, etc.)



Central Limit Theorem

e Central Limit Theorem says that if you add a “large”
number of independent samples from the same
distribution (binomial, Poisson, gamma etc.) , the
distribution of the sums will be approximately normal

— Standardizing the resulting distribution will produce a new

random variable that is close to one that has a standard
normal distribution

e “Large” varies between distributions and conditions
but can be reasonably small (>5)

 The central limit theorem does not mean that “all
samples with large numbers are normal”.



Central Limit Theorem

Allows us to use statistics that are premised on a normal
distribution even though the underlying (root) random
variables may themselves not be normally distributed!

* H# prey caught by individual represents a Poisson random
distribution

 Sample the # of prey caught by multiple individuals in
two populations

e Distribution of observed # prey caught in the two
populations will approach a normal distribution



Density

Log-normal distribution

_ 1 _(nx-wp?
fx) = xax/ﬁe 202

2 - o=1
© O = O . 5 # Log normal distribution
o x <-seq(0,5,0.01)

— In1 <- dinorm(x,meanlog =0, sdlog =1)
© ) 1'8 In2 <- dInorm(x,meanlog =0, sdlog =0.5)
o In3 <- dInorm(x,meanlog =0, sdlog =1.8)

plot(x,In3,col="black",type="1",
< xlab="X",ylab="Density",lwd=2)
e points(x,In2,col="blue",type="1",lwd=2)
points(x,In1,col="red",type="1",lwd=2)
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 Why is Log-normal often observed in biological systems?



Exponential distribution
(negative exponential distribution)

* Describes time between events in a Poisson
process

)
-

1.0

# Exponential distribution

x <- seq(0,5,0.01)

el <- dexp(x, rate = 0.5)

e2 <- dexp(x, rate = 1)

e3 <- dexp(x, rate = 1.5)

plot(x,el,col="red", type="1",
ylim=c(0,1.5),
xlab="X",ylab="Density",lwd=2)

points(x,e2,col="blue",type="1",lwd=2)

points(x,e3,col="black",type="1",lwd=2)
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Characterizing distributions

* Location and spread
— Location: Mean, median, mode

— Spread: variance, standard deviation,

e Distribution characteristics

— Central moments
e Arithmetic mean (first moment)
e Variance (second moment)
e Skewness (third moment)
e Kurtosis (fourth moment)



