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Review of probability and 

distributions



Outline

• Discrete random variables

– Bernoulli

– Binomial

– Poisson

– Negative Binomial

• Continuous random variables

– Uniform distribution

– Normal distribution

• Central Limit Theorem

• Other Continuous random variables

– Log-normal distribution

– Exponential



Bernoulli Random variable

• Event with only 2 outcomes

• Pitcher plant

– Event: visit

– Set: capture, escape

– Assumes visits independent

• Habitat suitability

– Random sample of quadrats with species being 

present or absent.

Nepenthes sp.



Bernoulli Random variable

• Bernoulli distribution

– Probability of success P(X=1)= p

– Probability of failure P(X=0= 1- p    (first axiom)

– X has a Bernoulli distribution with parameter P

• Single event or observation distributed as a 

Bernoulli random variable
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Binomial distribution

• Pitcher plant
– Observe 1000 events (visits)

– Events are independent and  identically distributed 
random variables each with parameter p

– n = (0,1,0,0,1,0…)

– Number of captures

– X = 364 = count of number of successes from n trails

– Random variable X is a binomial distribution 

– Read as: X number of successes in n  Bernoulli trials 
based on p
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Binomial probability mass function

• Probability mass function: the probability that a 

discreet random variable is exactly equal to some 

value

• Binomial coefficient: “n choose k”

• How many ways can k success be obtained from n 

trails
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Binomial probability mass function

What is the probability of observing 2 successes in 5 trials if the Bernoulli p = 0.5

�
� 	�(1 � )��� = Pr � � � � 0.3125

Probability of 2 independent successes: 0.5^2 = 0.25

Probability of 3 independent failures: (1-0.5)(5-2)= 0.125

10 = Number of ways 2 successes can result from 5 trails

(1 1 0 0 0) (0 1 1 0 0) (0 0 1 1 0) (0 0 0 1 1)

(1 0 1 0 0) (0 1 0 1 0) (0 0 1 0 1)

(1 0 0 1 0) (0 1 0 0 1)

(1 0 0 0 1)



Binomial probability mass function
10 trails

P = 0.5
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P = 0.2
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• Exact probabilities can be easily calculated

• When p = 0.5, probability distribution symmetric

• Shape of distribution depends on N and P
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Poisson distribution

• Poisson: the number of individuals, arrivals, 
events, counts, etc., in a given time/space unit 
of counting effort.

– Number of seeds/seedling falling in a gap

– Number of offspring produced in a season (if the 
number of breeding attempts is not recorded)

– Number of prey caught per unit time

• Often used when number of counts is small



Poisson distribution

• Distribution described by single parameter 

lamda (λ)

• Lamda is the average number of occurrences 

in each sample
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Poisson Probability mass function 

• What is the probability of observing 3 birds in 

a 625 m2 patch if the average number of birds 

is hypothesized to be 2

• X = 3, λ � 2
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Poisson

• When λ is small (< 1) the distribution has a strong 
“reverse-j” shape 

• When the expected number of counts gets large 
(λ > 10) the Poisson becomes approximately 
normal

• λ sometimes referred to as a rate parameter 
because it can describe the frequency of rate 
events in time

• Poisson has no upper limit (0, unlimited)

• Variance of the Poisson is equal to its mean



Poisson distribution with different λ

# Poisson distribution

x <- c(0:12)

lamda <- 8 # 0.1, 0.5, 1,2,3,8

p <- dpois(x,lamda)

barplot(p,axes = TRUE, 

names.arg = x,

ylim=c(0,max(p)+0.1),

ylab = "P(X)"

)

mtext(paste("lamda = ",lamda),side=3,

outer=FALSE,line=-3,cex=1.5)



Negative binomial distribution

• The negative binomial counts the number of 
failures before a predetermined number of 
success occurs
– Remember the binomial is number of successes in a 

fixed number of trials

– Discrete, similar to the Poisson, but variance can be 
larger than its mean (can be over dispersed, which can 
valuable for ecological data)

• In ecology it is sometimes used because it is a 
good phenomenological description of a 
clustered distribution with no upper limit, and 
more variance than the Poisson.



Negative binomial distribution

• p is the probability of success per trail 

(Bernoulli random variable)

• r is the predefined number of successes that 

need to be observed
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Negative binomial probability mass 

function

• For k > 10 the NB resembles the Poisson

• k often < 1 when used in ecological applications
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Examples of negative binomial 

distributions

# Negative binomial distribution

X <- c(0:12)

k <- 10

#nbp <- dnbinom(x,size=1,prob = 0.2)

nbp <- dnbinom(x,size=k,mu=1)

barplot(nbp,axes = TRUE, 

names.arg = x,

ylim=c(0,max(nbp)+0.1),

ylab = "P(X)"

)

mtext(paste("k = ",k),side=3,

outer=FALSE,line=-3,cex=1.5)



Discrete vs. continuous               

random variables

• Discrete random variables

– Presence vs. absence

– Count data, integers, e.g. 1,4,7

– E.g. # offspring, # prey captured, # species

• Continuous random variables

– Can have values within an interval

– Real numbers, e.g. 1.74, 14.9

– E.g. spine length, N concentration in soil, body mass, 
pesticide concentration in fish tissue



• Exact probability mass function can be calculated for each count 
expectation

• E.g. probability of observing a count of 2 = 0.72

• With continuous random variables we can not identify all the 
possible events or outcomes

• For continuous random variables a specific probability can not be 
directly calculated for each measured value

• E.g. probability of  observing a body mass of 67.34 kg

• Use probability density functions

• Constructed by getting the probability that a measurement occurs 
within a sub interval (e.g. p(67.3 < x <67.4))

Discrete random variables



Calculating probability distributions of 

continuous variables

Probability of observing a wing 

length of 14.86cm?

• Assume max wing length = 20cm

• Assume any wing length between 

0 and 20cm is equally likely to 

occur.

Ho: Wing length x is between 

0 and 10cm

Discrete intervals have defined 

probabilities

0 cm 20 cm

10 cm

0 < X < 10           10 < X < 20

P = 0.5 P = 0.5



Uniform random variable
• Assume a closed unit interval (real number bounded by: 0 < x < 10)

• This interval can be divided into sub-intervals

• Within a closed interval the probability of a value occurring within a 
subinterval can be defined (interval = 0:1)

• In a continuous sample space, all the probabilities of events must still sum 
to 1 (first axiom)

• Probability density function (PDF)

• Probability of x occurring in interval I is given by the area under the curve

• Total area under the curved described by a PDF = 1

• What are ecological examples of a uniform random variable?
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# Uniform distribution PDF

x <- seq(0,10,0.1)

updf <- dunif(x,min=0,max=10)

plot(x,updf,ylim=c(0,1),

type="l",xlim=c(0,10),

ylab="P(X)")



Uniform variable

cumulative distribution function

• Probability that a random variable X is less 

than or equal to a value y.

F(y)� "(� ? @)

• CDF is the area under the PDF  for x < y

# Uniform distribution CDF

x <- seq(0,10,0.1)

ucdf <- punif(x,0,10) 

plot(x,ucdf,ylim=c(0,1),

type="l",xlim=c(0,10),

ylab="P(X)",col="red")

points(x,updf,type="l",

col="black")



Normal random variables

(Gaussian)
• Observations clustered around a central value

• Long tails (infinite in the PDF)

• Distribution is approximately symmetrical

• Assumptions of normal distributions are the basis of many statistical tests
– Regression, ANOVA

• Ecological examples of normal distributions?

# Normal distribution

rN <- rnorm(1000,mean=0,sd =1)

hist(rN,main = "",

xlab="Observed values",

col="grey92",prob=TRUE)

curve(dnorm(x,mean=0,sd=1),

add=TRUE,col="red")



Normal variable

Probability density function

Normal PDF defined by:

μ = mean

σ = standard deviation   (σ2 = variance) 
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μ = 7

σ = 1.8

# Normal distribution pdf

x <- seq(-2,15,0.01)

snd <- dnorm(x,mean=7,sd=1.8)

plot(x,snd,xlim=c(0,14),

type="l",lwd=2,

xlab="X",

ylab="Density")



Normal variable

cumulative probability distribution

• Integral of PDF (no analytical solution)

J � � 	 K 8 ) L)
M

�N

# Normal distribution cdf

x <- seq(-2,15,0.01)

snd <- dnorm(x,mean=7,sd=1.8)

scnd <- pnorm(x,mean=7,sd=1.8)

plot(x,scnd,xlim=c(0,14),

type="l",lwd=2,

xlab="X",

ylab="Density")

points(x,snd,type="l",col="red")



Normal distribution examples

• Standard normal distribution  0,1

# Standard Normal distribution pdf

x <- seq(-5,5,0.01)

snd <- dnorm(x,mean=0,sd=1)

plot(x,snd,xlim=c(-4,4),

type="l",lwd=2,

xlab="X",

ylab="Density")



Properties of normal distributions

1. Normal distributions can be added and the 

result is a normal distribution

2. Normal distributions can be transformed 

with shift and change of scale operations

– and a normal distribution is retained

3. Any normal distribution can be transformed 

into the standard normal distribution 

through shift and change of scale operations



Normal distribution transformations

• Shift: a = 1, b != 0
– Move random 

variable over b units

• Scale: a != 1, b = 0
– One unit of X 

becomes a units of Y

�	~	4(H, I)
Y = aX + b

# Transforme Normal distributions pdf

par(mfrow=c(3,1))

x <- rnorm(1000,2,1)

hist(x,xlim=c(0,15),ylim=c(0,0.4),

prob=TRUE,col="gray92",

main="")

a = 2; b = 5

y1 <- a*x + 0  # scale

y2 <- 1*x + b  # shift

hist(y2,xlim=c(0,15),ylim=c(0,0.4),

prob=TRUE,col="red",

main="")

hist(y1,xlim=c(0,15),ylim=c(0,0.4),

prob=TRUE,col="blue",

main="")

a = 0

b = 5

a = 2

b = 0



Central limit theorem

• Ubiquity of Normal Distribution due to the 

Central Limit Theorem

• Most classical statistics are premised on a 

normal distribution due to the central limit 

theorem (ANOVA, regression, etc.)



Central Limit Theorem

• Central Limit Theorem says that if you add a “large” 
number of independent samples from the same 
distribution (binomial, Poisson, gamma etc.) , the 
distribution of the sums will be approximately normal

– Standardizing the resulting distribution will produce a new 
random variable that is close to one that has a standard 
normal distribution

• “Large” varies between distributions and conditions 
but can be reasonably small (>5)

• The central limit theorem does not mean that “all 
samples with large numbers are normal”.



Central Limit Theorem

Allows us to use statistics that are premised on a normal 
distribution even though the underlying (root) random 
variables may themselves not be normally distributed!

• # prey caught by individual represents a Poisson random 
distribution

• Sample the # of prey caught by multiple individuals in 
two populations

• Distribution of observed # prey caught in the two 
populations will approach a normal distribution



Log-normal distribution

• Why is Log-normal often observed in biological systems?
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σ = 1

σ = 0.5

σ = 1.8

# Log normal distribution

x <- seq(0,5,0.01)

ln1 <- dlnorm(x,meanlog =0, sdlog =1)

ln2 <- dlnorm(x,meanlog =0, sdlog =0.5)

ln3 <- dlnorm(x,meanlog =0, sdlog =1.8)

plot(x,ln3,col="black",type="l",

xlab="X",ylab="Density",lwd=2)

points(x,ln2,col="blue",type="l",lwd=2)

points(x,ln1,col="red",type="l",lwd=2)



Exponential distribution

(negative exponential distribution)

• Describes time between events in a Poisson 

process

# Exponential distribution

x <- seq(0,5,0.01)

e1 <- dexp(x, rate = 0.5)

e2 <- dexp(x, rate = 1)

e3 <- dexp(x, rate = 1.5)

plot(x,e1,col="red",type="l",

ylim=c(0,1.5),

xlab="X",ylab="Density",lwd=2)

points(x,e2,col="blue",type="l",lwd=2)

points(x,e3,col="black",type="l",lwd=2)

λ = 0.5

λ = 1

λ = 1.5



Characterizing distributions

• Location and spread

– Location: Mean, median, mode

– Spread: variance, standard deviation,

• Distribution characteristics

– Central moments

• Arithmetic mean (first moment)

• Variance (second moment)

• Skewness (third moment)

• Kurtosis (fourth moment)


