NRES_798_3_201501

Review of probability and distributions

Outline

- Discrete random variables
- Bernoulli
- Binomial
- Poisson
- Negative Binomial
- Continuous random variables
- Uniform distribution
- Normal distribution
- Central Limit Theorem
- Other Continuous random variables
- Log-normal distribution
- Exponential

Bernoulli Random variable

- Event with only 2 outcomes
- Pitcher plant
- Event: visit
- Set: capture, escape
- Assumes visits independent

Nepenthes sp.

- Habitat suitability
- Random sample of quadrats with species being present or absent.

Bernoulli Random variable

- Bernoulli distribution
- Probability of success $P(X=1)=p$
- Probability of failure $P(X=0=1-p \quad$ (first axiom)
$-X$ has a Bernoulli distribution with parameter P

$$
X \sim \operatorname{Bernoulli}(p)
$$

- Single event or observation distributed as a Bernoulli random variable

Binomial distribution

- Pitcher plant
- Observe 1000 events (visits)
- Events are independent and identically distributed random variables each with parameter p
- $\mathrm{n}=(0,1,0,0,1,0 .$.
- Number of captures
$-X=364$ = count of number of successes from n trails
- Random variable X is a binomial distribution

$$
X \sim \operatorname{Binomial}(n, p)
$$

- Read as: X number of successes in n Bernoulli trials based on p

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Binomial probability mass function

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- Probability mass function: the probability that a discreet random variable is exactly equal to some value
- Binomial coefficient: "n choose k"

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

- How many ways can k success be obtained from n trails

Binomial probability mass function

What is the probability of observing 2 successes in 5 trials if the Bernoulli $p=0.5$

Probability of 2 independent successes: $0.5^{\wedge} 2=0.25$

$10=$ Number of ways 2 successes can result from 5 trails
(11000) (01100) (00110) (00011)
(10100) (01010) (00101)
(10010) (01001)
(10001)

Binomial probability mass function

- Exact probabilities can be easily calculated
- When $p=0.5$, probability distribution symmetric
- Shape of distribution depends on N and P

Poisson distribution

- Poisson: the number of individuals, arrivals, events, counts, etc., in a given time/space unit of counting effort.
- Number of seeds/seedling falling in a gap
- Number of offspring produced in a season (if the number of breeding attempts is not recorded)
- Number of prey caught per unit time
- Often used when number of counts is small

Poisson distribution

$$
X \sim \operatorname{Poisson}(\lambda)
$$

- Distribution described by single parameter lamda (λ)
- Lamda is the average number of occurrences in each sample

Poisson Probability mass function

$$
P(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}
$$

- What is the probability of observing 3 birds in a $625 \mathrm{~m}^{2}$ patch if the average number of birds is hypothesized to be 2
- $X=3, \lambda=2$

$$
P(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}=\frac{2^{3}}{3!} e^{-2}=\frac{8}{36} e^{-2}=0.18
$$

Poisson

-When λ is small (<1) the distribution has a strong "reverse-j" shape

- When the expected number of counts gets large ($\lambda>10$) the Poisson becomes approximately normal
- λ sometimes referred to as a rate parameter because it can describe the frequency of rate events in time
- Poisson has no upper limit (0, unlimited)
- Variance of the Poisson is equal to its mean

Poisson distribution with different λ

\# Poisson distribution
$\mathrm{x}<-\mathrm{c}(0: 12)$
lamda <- 8 \# 0.1, 0.5, 1,2,3,8
p <- dpois(x,lamda)
$\operatorname{barplot}(p, a x e s=$ TRUE,
names.arg $=x$,
$y \lim =c(0, \max (p)+0.1)$,
ylab = "P(X)"
)
mtext(paste("lamda = ",lamda),side=3,
outer=FALSE,line=-3,cex=1.5)

Negative binomial distribution

- The negative binomial counts the number of failures before a predetermined number of success occurs
- Remember the binomial is number of successes in a fixed number of trials
- Discrete, similar to the Poisson, but variance can be larger than its mean (can be over dispersed, which can valuable for ecological data)
- In ecology it is sometimes used because it is a good phenomenological description of a clustered distribution with no upper limit, and more variance than the Poisson.

Negative binomial distribution

$$
X \sim N B(r ; p)
$$

- p is the probability of success per trail (Bernoulli random variable)
- r is the predefined number of successes that need to be observed

Negative binomial probability mass function

$$
\operatorname{Pr}(X=k)=\left(\frac{(k+r-1)!}{k!(r-1)!}\right) p^{k}(1-p)^{r}
$$

- For $k>10$ the NB resembles the Poisson
- k often <1 when used in ecological applications

Examples of negative binomial distributions

\# Negative binomial distribution
$\mathrm{X}<-\mathrm{c}(0: 12)$
k <-10
\#nbp <- dnbinom (x,size=1, prob $=0.2$)
nbp <- dnbinom(x,size=k, mu=1)
barplot(nbp,axes = TRUE,
names. $\arg =\mathrm{x}$,
$y \lim =c(0, \max (n b p)+0.1)$,
ylab $=" P(X)$ "
)
mtext(paste("k = ",k),side=3,
outer=FALSE,line=-3,cex=1.5)

Discrete vs. continuous random variables

- Discrete random variables
- Presence vs. absence
- Count data, integers, e.g. 1,4,7
- E.g. \# offspring, \# prey captured, \# species
- Continuous random variables
- Can have values within an interval
- Real numbers, e.g. 1.74, 14.9
- E.g. spine length, N concentration in soil, body mass, pesticide concentration in fish tissue

Discrete random variables

- Exact probability mass function can be calculated for each count expectation
- E.g. probability of observing a count of $2=0.72$

- With continuous random variables we can not identify all the possible events or outcomes
- For continuous random variables a specific probability can not be directly calculated for each measured value
- E.g. probability of observing a body mass of 67.34 kg
- Use probability density functions
- Constructed by getting the probability that a measurement occurs within a sub interval (e.g. p(67.3 < x <67.4))

Calculating probability distributions of continuous variables

Probability of observing a wing length of 14.86 cm ?

$$
0 \mathrm{~cm} \quad 20 \mathrm{~cm}
$$

- Assume any wing length between 0 and 20 cm is equally likely to occur.

Ho: Wing length x is between 0 and 10 cm

- Assume max wing length $=20 \mathrm{~cm}$

$$
\begin{array}{cc}
\underline{0}<X \leq 10 & \underline{10}<X \leq 20 \\
P=0.5 & P=0.5
\end{array}
$$

Discrete intervals have defined probabilities

Uniform random variable

- Assume a closed unit interval (real number bounded by: $0 \leq x \leq 10$)
- This interval can be divided into sub-intervals
- Within a closed interval the probability of a value occurring within a subinterval can be defined (interval $=0: 1$)
- In a continuous sample space, all the probabilities of events must still sum to 1 (first axiom)

- Probability density function (PDF)
- Probability of x occurring in interval I is given by the area under the curve
- Total area under the curved described by a PDF $=1$

$$
f(x)=\left\{\begin{array}{c}
1 / 10,0 \leq x \leq 10 \\
0 \text { otherwise }
\end{array}\right.
$$

- What are ecological examples of a uniform random variable?

Uniform variable cumulative distribution function

- Probability that a random variable X is less than or equal to a value y.

\# Uniform distribution CDF $\mathrm{x}<-\operatorname{seq}(0,10,0.1)$ ucdf <- punif $(x, 0,10)$ plot(x, ucdf, $y \lim =c(0,1)$, type="I",xlim=c(0,10), ylab="P(X)",col="red") points(x,updf,type="I", col="black")
- CDF is the area under the PDF for $x<y$

Normal random variables (Gaussian)

- Observations clustered around a central value
- Long tails (infinite in the PDF)
- Distribution is approximately symmetrical

- Assumptions of normal distributions are the basis of many statistical tests
- Regression, ANOVA
- Ecological examples of normal distributions?

Normal variable Probability density function

$$
X \sim N(\mu, \sigma)
$$

Normal PDF defined by:

$$
\mu=\text { mean }
$$

$$
\sigma=\text { standard deviation (} \sigma^{2}=\text { variance) }
$$

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

\# Normal distribution pdf
$x<-\operatorname{seq}(-2,15,0.01)$
snd <- dnorm(x, mean=7,sd=1.8)
plot(x, snd, x lim $=c(0,14)$,
type="I",lwd=2,
xlab="X",
ylab="Density")

Normal variable

cumulative probability distribution

$$
F(X)=\int_{-\infty}^{x} f(x) d x
$$

- Integral of PDF (no analytical solution)

Normal distribution examples

- Standard normal distribution 0,1

\# Standard Normal distribution pdf
$x<-$ seq(-5,5,0.01)
snd <- dnorm (x, mean=0,sd=1)
plot(x, snd, x lim $=c(-4,4)$,
type="I",lwd=2,
xlab="X",
ylab="Density")

Properties of normal distributions

1. Normal distributions can be added and the result is a normal distribution
2. Normal distributions can be transformed with shift and change of scale operations

- and a normal distribution is retained

3. Any normal distribution can be transformed into the standard normal distribution through shift and change of scale operations

Normal distribution transformations

$$
\begin{aligned}
X & \sim N(\mu, \sigma) \\
Y & =\mathrm{aX}+\mathrm{b}
\end{aligned}
$$

- Shift: $a=1, b$! $=0$
- Move random variable over b units
- Scale: $a!=1, b=0$
- One unit of X becomes a units of Y
\# Transforme Normal distributions pdf
par(mfrow=c(3,1))
$x<-\operatorname{rnorm}(1000,2,1)$
hist($x, x \lim =c(0,15)$,ylim=c($0,0.4$), prob=TRUE,col="gray92",
main="")
$a=2 ; b=5$
$y 1<-a^{*} x+0$ \# scale
$y 2<-1^{*} x+b$ \# shift
hist(y2,xlim=c(0,15),ylim=c(0,0.4), prob=TRUE,col="red", main="")
hist($y 1, x \lim =c(0,15), y \lim =c(0,0.4)$, prob=TRUE,col="blue", main="")

Central limit theorem

- Ubiquity of Normal Distribution due to the Central Limit Theorem
- Most classical statistics are premised on a normal distribution due to the central limit theorem (ANOVA, regression, etc.)

Central Limit Theorem

- Central Limit Theorem says that if you add a "large" number of independent samples from the same distribution (binomial, Poisson, gamma etc.) , the distribution of the sums will be approximately normal
- Standardizing the resulting distribution will produce a new random variable that is close to one that has a standard normal distribution
- "Large" varies between distributions and conditions but can be reasonably small (>5)
- The central limit theorem does not mean that "all samples with large numbers are normal".

Central Limit Theorem

Allows us to use statistics that are premised on a normal distribution even though the underlying (root) random variables may themselves not be normally distributed!

- \# prey caught by individual represents a Poisson random distribution
- Sample the \# of prey caught by multiple individuals in two populations
- Distribution of observed \# prey caught in the two populations will approach a normal distribution

Log-normal distribution

$$
f(x)=\frac{1}{x \sigma \sqrt{2 \pi}} e^{-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}}
$$

\# Log normal distribution

 $x<-\operatorname{seq}(0,5,0.01)$In1 <- dlnorm(x,meanlog $=0$, sdlog =1)
In2 <- dlnorm(x,meanlog $=0$, sdlog $=0.5$)
$\ln 3<-$ dlnorm (x, meanlog $=0$, sdlog $=1.8$)
plot(x,ln3,col="black",type="I",
xlab="X",ylab="Density",lwd=2)
points(x,ln2,col="blue",type="I",lwd=2) points(x,ln1,col="red",type="I",lwd=2)

- Why is Log-normal often observed in biological systems?

Exponential distribution (negative exponential distribution)

- Describes time between events in a Poisson process


```
# Exponential distribution
x<- seq(0,5,0.01)
e1 <- dexp(x, rate = 0.5)
e2 <- dexp(x, rate = 1)
e3 <- dexp(x, rate = 1.5)
plot(x,e1,col="red",type="l",
    ylim=c(0,1.5),
    xlab="X",ylab="Density",lwd=2)
points(x,e2,col="blue",type="l",lwd=2)
points(x,e3,col="black",type="l",lwd=2)
```


Characterizing distributions

- Location and spread
- Location: Mean, median, mode
- Spread: variance, standard deviation,
- Distribution characteristics
- Central moments
- Arithmetic mean (first moment)
- Variance (second moment)
- Skewness (third moment)
- Kurtosis (fourth moment)

