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Review of probability, distributions, 

statistical inference



Interest

Area Interest

ANOVA (ANCOVA) 4

Spatial statistics 4

Time series 2

Habitat modeling 1

Mixed models 1

Multivariate stats 1

Stats as tool to illuminate the interesting questions in biology (variability)

Stats as puzzle to be solved (multiple answers)



A model is a simplified version of reality that is developed to:

• Test a hypothesis

• Better understand how an ecological system functions

• Predict how a ecological system will change in response to 

future shifts

Statistics help us test and inform models

Statistics focuses on uncertainty in data, and models
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What is an scientific model?



What is a model?

model = simplified version of reality

Verbal model

Qualitative model

Quantitative model

Complex quantitative model

The persistence of marmot populations depends on 

winter temperatures and the availability of food



model = simplified version of reality

Verbal model

Qualitative model

Quantitative model

Complex quantitative model

Marmot populations increase when food is abundant.

X1: fed

X2: not fed

Ho: Nx1 =  Nx2

Ha: Nx1 > Nx2



model = simplified version of reality

Verbal model

Qualitative model

Quantitative model

Complex quantitative model

Nt+1 = (b + s)*Nt

s = overwinter survival = 0.50
b = birth rate = 0.32 + food*0.015  = 0.52



model = simplified version of reality

Verbal model

Qualitative model

Quantitative model

Complex quantitative model



What is a model?

model = simplified version of reality

Verbal model

Qualitative model

Quantitative model

Complex quantitative model

Marmot numbers increase when food is abundant.

X1: fed

X2: not fed

Ho: Nx1 =  Nx2

Ha: Nx1 > Nx2

Why stats?    Sample vs. Population



What is a model?

model = simplified version of reality

Verbal model

Qualitative model

Quantitative model

Complex quantitative model

• Assumptions explicitly stated

• Interactions between factors explicit 

• Increased quantification

Increased partitioning of uncertainty



Population response

Nt+1 = Nt + births + immigration – deaths - emigration
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• Variability

– naturally occurring

– attributable to ‘true’ 
heterogeneity in a 
population

• Incertitude

– arises due to lack of 
knowledge about 
parameters or models

– can be reduced by 
collecting more and better 
data
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Uncertainty in ecology



Uncertainty in ecology

Four types of uncertainty

• Natural variation

• Measurement error

• Systematic uncertainty

• Model uncertainty

Incertitude !



Natural variation

Blue tongue lizard

• Genotype

• Phenotype

(gene * environment)

• Behaviour

• Animal condition

• Environment
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Uncertainty in ecology

• Measurement error

0 5 10 15 20 25

Distribution

(no measurement error)

Measurement error

Blue whale

Beaked whale



Uncertainty in ecology

• Systematic error

0 5 10 15 20 25

Distribution

(no systematic error)

Systematic error

(bias)



Uncertainty in ecology

• Model uncertainty: biological process

Nt+1 = Nt + Nt*r

or

Nt+1 = Nt + (Nt*r*(1-Nt/k))
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# of offspring
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• Uncertainty, variation, stochasticity
– Some times interesting

– Some time a nuisance

• Creates world where statistics are necessary
– Characterize

– Test



Probability distribution
– Aggregation of observations of a random variable

– Probabilities of a single random variable taking on various alternative 
values

Random variable
– Function that assigns a numerical value  to each possible outcome of 

an experiment

– Numerical set that is defined by the probability of given discrete 
outcomes of an experiment

• E.g. Probability associate with having 0,1,2,3 offspring during a single 
reproductive event

Observed variation ~ probability distribution

Frequents and Bayesian statistics



Probability review

Event

• fair toss of neutral coin

Discreet outcome

• can be assigned a positive integer

Sample space

• head, tail 

• set of all possible outcomes
– Outcomes mutually exclusive

– Outcomes in set exhaustive



Probability review

Estimating the probability of a 
discreet event (by sampling)
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First axiom of probability



Assumptions

• Fair toss

Initial state of system unknown, or ignored

Dynamics of system unknown, or ignored

Unable or unwilling to measure, “random”

• Probability estimate dependent on how the sample space is defined

• Dependent on how our question structured

• Dependent on the assumptions we are willing to make

• Depends on the details of the trials

• How your study is defined is very important (need to be specific)

• Clear, explicit hypothesis

• What is the sample space that you are sampling

• What variability are you interested in, what are you willing to treat as noise



Simple probabilities
• Whirligig beetle

– Always produces exactly 2 litters (assumption?)

– Either 2,3 or 4 offspring per litter

• Questions about whirligig fitness
– What is the probability of producing N offspring?

Possible fitness = sample space =

Fitness = {(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)}

Fitness outcomes exhaustive

Probability of each outcome = 1/9

Possible fitness range 4 to 8 offspring 



Combining simple probabilities

• What is the probability of observing a whirligig 

that has 6 offspring?

• 6 offspring = {(2,4),(3,3),4,2)}

• Complex event: composite of multiple simple 

probabilities



Combining simple probabilities

• What is the probability of observing a whirligig that has 6 offspring?

(2,2) (2,4)(2,3)

(3,2)

(4,2)

(3,4)(3,3)

(4,3) (4,4)

Fitness = {(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)}

6 offspring = {(2,4),(3,3),4,2)}

Complex events

Subset: 6 offspring subset of Fitness



Complex events

Fitness        = {(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)}

6 offspring = {(2,4),(3,3),4,2)}

Assume # offspring in second litter is independent of first litter

Complex event probability (union of simple events)

P(6 offspring) = P((2,4) or (3,3) or (4,2) = P((2,4)) + P((3,3)) + P((4,2))

P(6 offspring) = P(A or B or C) = P(A) + P(B) + P(C)

The probabilities of a complex event equals the sum of the component 

simple events.

Second axiom of probability



Combining simple events
• What is the probability of Whirligig beetles 

producing 2 offspring in the first litter and 3 
offspring in the second litter?

Offspring L1 = {2,3,4}

Offspring L2 = {2,3,4} 

P(L1 = 2) = 1/3

P(L2 = 3) = 1/3

(2,2) (2,4)(2,3)

(3,2)

(4,2)

(3,4)(3,3)

(4,3) (4,4)



Shared events
Assume # offspring in second litter is independent of first litter

Shared event probability (intersection of simple events)

P(L1=2 ∩ L2=3 ) = P(L1=2) x P(L2=3)

P(L1=2 ∩ L2=3 ) = 1/3 * 1/3 = 1/9 P((2,3) = 1/9

P(A ∩ B) =  P(A) x P(B)

(2,2) (2,4)(2,3)

(3,2)

(4,2)

(3,4)(3,3)

(4,3) (4,4)



(2,2) (2,4)(2,3)

(3,2)

(4,2)

(3,4)(3,3)

(4,3) (4,4)

Probability of  a union of two events

Assume # offspring in second litter is independent

of first litter

Probability that L1=2 or L2=4        

P(L1=2 U L2=4)

P(A U B)

P(A U B) = P(A) + P (B) – P(A ∩ B)

P(A U B) = 1/3 + 1/3 – 1/9

Union of events

common event



Conditional probability
Events are NOT independent

Offspring produced in L2 are dependent on # of offspring in L1

P(A|B) =  P(A) x P(B) P(A ∩ B) 
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(2,2) (2,4)(2,3)

(3,2)

(4,2)

(3,4)(3,3)

(4,3) (4,4)

P(L2=4 givenL1 =2) = (1/9)

(1/3)


