NRES_798_2_201501

Review of probability, distributions, statistical inference

Interest

Area	Interest
ANOVA (ANCOVA)	4
Spatial statistics	4
Time series	2
Habitat modeling	1
Mixed models	1
Multivariate stats	1

Stats as tool to illuminate the interesting questions in biology (variability)

Stats as puzzle to be solved (multiple answers)

What is an scientific model?

A model is a simplified version of reality that is developed to:

- Test a hypothesis
- Better understand how an ecological system functions
- Predict how a ecological system will change in response to future shifts

Statistics help us test and inform models
Statistics focuses on uncertainty in data, and models

What is a model?

model $=$ simplified version of reality

Verbal model

Qualitative model

Quantitative model

Complex quantitative model

The persistence of marmot populations depends on winter temperatures and the availability of food
model $=$ simplified version of reality
Verbal model

Qualitative model

Quantitative model

Complex quantitative model

Marmot populations increase when food is abundant.

$$
\begin{array}{ll}
\text { X1: fed } & \text { Ho: } N_{x 1}=N_{x 2} \\
\text { X2: not fed } & H a: N_{x 1}>N_{x 2}
\end{array}
$$

model $=$ simplified version of reality

Verbal model

Qualitative model

Quantitative model

Complex quantitative model

$$
\begin{aligned}
& N_{t+1}=(b+s)^{*} N_{t} \\
& s=\text { overwinter survival }=0.50 \\
& b=\text { birth rate }=0.32+\text { food } 0.015=0.52
\end{aligned}
$$

model = simplified version of reality

Verbal model

Qualitative model

Quantitative model

Complex quantitative model

$$
N_{i t}=\frac{k_{i t} N_{0} e^{r_{i t}}}{k_{i t}+N_{0}\left(e^{r_{i t} t}-1\right)}
$$

What is a model?

model $=$ simplified version of reality

Verbal model

Qualitative model

Quantitative model

Complex quantitative model

Marmot numbers increase when food is abundant.

X1: fed	Ho: $N_{x 1}=N_{x 2}$	Why stats?
X2: not fed	$H a: N_{x 1}>N_{x 2}$	

What is a model?

model $=$ simplified version of reality

Verbal model

Qualitative model

Quantitative model

Complex quantitative model

- Assumptions explicitly stated
- Interactions between factors explicit
- Increased quantification

Increased partitioning of uncertainty

Population response

$\mathrm{N}_{\mathrm{t}+1}=\mathrm{N}_{\mathrm{t}}+$ births + immigration - deaths - emigration

Uncertainty in ecology

- Variability
- naturally occurring
- attributable to 'true' heterogeneity in a population
- Incertitude
- arises due to lack of knowledge about parameters or models
- can be reduced by collecting more and better data

Uncertainty in ecology

Four types of uncertainty

- Natural variation
- Measurement error
- Systematic uncertainty

- Model uncertainty

Natural variation

Blue tongue lizard

- Genotype
- Phenotype (gene * environment)
- Behaviour
- Animal condition
- Environment

Uncertainty in ecology

- Measurement error

Blue whale

Beaked whale

Uncertainty in ecology

- Systematic error
Distribution
(no systematic error)

Uncertainty in ecology

- Model uncertainty: biological process

$$
\begin{aligned}
N_{t+1} & =N_{t}+N_{t}^{*} r \\
& \text { or } \\
N_{t+1} & =N_{t}+\left(N_{t}^{*} r^{*}\left(1-N_{t} / k\right)\right)
\end{aligned}
$$

- Uncertainty, variation, stochasticity
- Some times interesting
- Some time a nuisance
- Creates world where statistics are necessary
- Characterize
- Test

Observed variation ~ probability distribution

Frequents and Bayesian statistics

Probability distribution

- Aggregation of observations of a random variable
- Probabilities of a single random variable taking on various alternative values

Random variable

- Function that assigns a numerical value to each possible outcome of an experiment
- Numerical set that is defined by the probability of given discrete outcomes of an experiment
- E.g. Probability associate with having 0,1,2,3 offspring during a single reproductive event

Probability review

Event

- fair toss of neutral coin

Discreet outcome

- can be assigned a positive integer

Sample space

- head, tail
- set of all possible outcomes
- Outcomes mutually exclusive
- Outcomes in set exhaustive

Probability review

Estimating the probability of a discreet event (by sampling)

$$
P=\frac{\text { number of times for outcome }}{\text { number of samples }}
$$

$$
\begin{aligned}
& 0.0 \leq \mathrm{P} \leq 1.0 \\
& \sum_{i=1}^{n} P\left(A_{i}\right)=1.0
\end{aligned}
$$

First axiom of probability

Assumptions
 - Fair toss

> Initial state of system unknown, or ignored
> Dynamics of system unknown, or ignored
> Unable or unwilling to measure, "random"

- Probability estimate dependent on how the sample space is defined
- Dependent on how our question structured
- Dependent on the assumptions we are willing to make
- Depends on the details of the trials
- How your study is defined is very important (need to be specific)
- Clear, explicit hypothesis
- What is the sample space that you are sampling
- What variability are you interested in, what are you willing to treat as noise

Simple probabilities

- Whirligig beetle
- Always produces exactly 2 litters (assumption?)
- Either 2,3 or 4 offspring per litter
- Questions about whirligig fitness
- What is the probability of producing N offspring?

Possible fitness $=$ sample space $=$

Fitness $=\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)\}$

Fitness outcomes exhaustive
Probability of each outcome $=1 / 9$

Possible fitness range 4 to 8 offspring

Combining simple probabilities

- What is the probability of observing a whirligig that has 6 offspring?
- 6 offspring $=\{(2,4),(3,3), 4,2)\}$
- Complex event: composite of multiple simple probabilities

Combining simple probabilities

- What is the probability of observing a whirligig that has 6 offspring?

Fitness $=\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)\}$
6 offspring $=\{(2,4),(3,3), 4,2)\}$
Complex events
Subset: 6 offspring subset of Fitness

Complex events

Fitness $=\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)\}$
6 offspring $=\{(2,4),(3,3), 4,2)\}$
Assume \# offspring in second litter is independent of first litter
Complex event probability (union of simple events)
$P(6$ offspring $)=P((2,4)$ or $(3,3)$ or $(4,2)=P((2,4))+P((3,3))+P((4,2))$
$P(6$ offspring $)=P(A$ or B or $C)=P(A)+P(B)+P(C)$
The probabilities of a complex event equals the sum of the component simple events.

Second axiom of probability

Combining simple events

- What is the probability of Whirligig beetles producing 2 offspring in the first litter and 3 offspring in the second litter?

Offspring $L_{1}=\{2,3,4\}$
Offspring $L_{2}=\{2,3,4\}$
$P\left(L_{1}=2\right)=1 / 3$
$P\left(L_{2}=3\right)=1 / 3$

Shared events

Assume \# offspring in second litter is independent of first litter

Shared event probability (intersection of simple events) $P\left(L_{1}=2 \cap L_{2}=3\right)=P\left(L_{1}=2\right) \times P\left(L_{2}=3\right)$

$$
P\left(L_{1}=2 \cap L_{2}=3\right)=1 / 3 * 1 / 3=1 / 9 \quad P((2,3)=1 / 9
$$

$P(A \cap B)=P(A) \times P(B)$

Union of events

Probability of a union of two events
Assume \# offspring in second litter is independent of first litter

Probability that $L_{1}=2$ or $L_{2}=4$
$P\left(L_{1}=2 \cup L_{2}=4\right)$
$P(A \cup B)$
common event

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& P(A \cup B)=1 / 3+1 / 3-1 / 9
\end{aligned}
$$

Conditional probability

Events are NOT independent
Offspring produced in L2 are dependent on \# of offspring in L1

$$
P(A \mid B)=P(A) \times P(B) P(A \cap B)
$$

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

