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Time series analysis
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Goals of time series analysis

ldentify the nature of the phenomenon
represented by a sequence of observations

e.g. quantify strength of population regulation, stability of
natural populations, identify population regulation
mechanisms, determine if observations are cyclic

Forecasting (predicting future values of the

time series variables).

e.g. conservation and stock management, assess
population size and increasing or decreasing trends
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Time series
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Time series analysis aims to filter out noise to make pattern
more clear.

Two basic classes of systematic components
— Trend
* Linear, nonlinear, does not repeat

— Seasonal, cyclic
* Repetition in systematic intervals



Classic decomposition

Xt:St‘I'mt‘l'Yt

S, = seasonal component
(known period d = 24 (hourly), d =
12 (monthly))

M, = trend component (slowly
changing in time)

Y, = random noise component
(might contain irregular cyclical
components of unknown
frequency + other noise).

trend seasonal data
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Classic decomposition

Births in New York

Seasonal decomposition of time
series by loess

stl(ts_object, “periodic”)

seasonal trend observed
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ldentifying and modeling systematic
patterns in time series

e Trend
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— Detrending

* Stationarity

— Constant mean, variance,
autocorrelation structure

— Differencing
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» Serial dependence
— Autocorrelation
— Moving average
— Seasonal cycles
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Autocorrelation

 How current population is related to previous population

%Y s o
A o A -
Xi ey X, — Kiyy ~ ) X

N AN A

Lag 1 Lag 2 Lag 3




flies

10000 15000

5000

Autocorrelation

flies <- ts(blowflySflies)
plot(flies)
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flies <- ts(blowflySflies)
plot(flies)

flies

Autocorrelation function
estimation
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flies <- ts(blowflySflies)
plot(flies)

flies
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Partial autocorrelation

* Autocorrelation between X, and X,,, after removing
linear dependence

— i.e. once the correlation at lag 1 that “propagates” to lag 2
is removed.

* Valuable for understanding drivers of observed
autocorrelation (i.e. identifying the appropriate lags in
autocorrelation)

 Only a spike at lag 1, in partial autocorrelation, suggests
that higher-order autocorrelations are effectively
explained by the lag-1 autocorrelation



Partial autocorrelation
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Partial autocorrelations

acf(flies)

acf(flies, type =“p”)
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Moving average




Max day temp

Seasonal Data
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y = a+ Bsin(2nt) +ycos(2mt) + ¢



Max day temp

Seasonal cycles

Year

Time scaled so season length is 1 (t,/365)

Fit linear model (after de-trending)

y = a+ Bsin(2nt) + ycos(2nt) + ¢




Decomposition

e Seasonal decomposition of time series
* Data, seasonal, trend, remainder (random)
* stl(ts object, “periodic”)

Decomposition of additive time series
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Time Series Models

p

* Autoregressive (AR) X, = zaixt_l e,

1

* Moving average (MA) X, = iﬁjet_j

* Autoregressive moving average (ARIMA)

— Box-Jenkens (Box and Jenkens 1976)
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Autoregressive moving average
(ARIMA)

Model selection
— Confirm data is stationary (graphically)

* Use differencing to achieve stationarity
— i.e. identify d (difference order)
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Autoregressive moving average
(ARIMA)

* Model selection (3 steps)

— Confirm data is stationary (graphically)

e Use differencing to achieve stationarity
— i.e. identify d (difference order)

— |dentify if a seasonal component is necessary
 |dentify seasonality: data plot, acf plot
* Include seasonal autoregressive term (SARIMA)

— ldentify the ARMA order (p,q)



ARIMA model selection (3 steps)

— Confirm data is stationary (graphically)
— |dentify if a seasonal component is necessary
— |ldentify the ARMA order (p,q)

* Use acf and pacf plots

e Shape of acf function (art of interpretation)
— Exponential decay to zero
» Autoregressive model (identify p using pacf)
— Damped oscillations decaying (exponential) to zero
» Autoregressive model
— One or more spikes, the rest is zero

» Moving average model, order q identified by where
autocorrelation becomes zero

— Exponential decay starting after a few lags
» Mixed autoregressive and moving average model

— ldentify potential min and max order for p and g and test all
model combinations

— Process focused ecological time series models will tend to be
autoregressive.



Autoregressive moving average (ARMA)

 ARIMAIn R
— Function arima(ts_object, order=c(p,d,q))

/1N

AR Degree of MA
order differencing order

arima(ts_object, order=c(2,1,0))
arima(ts_object, order=c(2,1,1))
arima(ts_object, order=c(1,1,1))
arima(ts_object, order=c(0,1,2))
AIC(m1,m2,m3,m4)



Multiple time series

* Correlations between two time series
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Multiple time series

* Correlations between two time series
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R time series

ts(data) : function to create time series object
acf(ts_data) : autocorrelation function
pacv(ts_data): partial autocorrelation function

stl(ts_data,”periodic” : Seasonal
decomposition of time series

Arima(ts_data,order=c(p,d,q)) : arima time
model



