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Model selection



“All models are wrong but some are 

useful” – George Box

• Models are abstractions

• Most biological systems too complex to be 

defined exactly by a model

• Is a model “good”, is a model “good enough”?

• Is model A better than model B?



Parsimonious Models

• A model is parsimonious if it has the following desirable 
properties:

1. Fits the data well (i.e. can explain the data).

2. Has few parameters, so the at the explanation of the data is 
not overly complicated.

3. There is confidence in the estimates of the parameters, and 
hence, confidence in the model’s explanation of the data.

Identifying parsimonious models is referred to as                  
model selection



Ecological (statistical) models

• Models aim to capture some component of 

the real world

Truth

(complex)

Model

(simple)

Ideal model is the

“true” model

)(
)(

)(
1)( tB

tK

tB
tr

dt

dB

i

i

i

i

i









−=



Ecological (statistical) models

• Complex models can approximate the truth well or 
poorly depending on their parameter values

• We need a measure of “distance” from the truth

Truth

Model 1

Model 2



Distance from truth: discrete system

• True model f

• True probability of observing event i (of K possible events) 
is pi

• Test model g

• Test model probability of observing event i is πi

• Information lost when assuming model g instead of f is 
given by:

• Kullback-Leibler information (distance)

• Kullback 1959: discrepancy between two distributions
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Kullback-Leibler distance (information)

• If our model was the truth (i.e. πi = pi for all i) then the 
distance I = 0

• I can be interpreted as the “information” lost when the 
model M is used to approximate the truth T

• K-L is one possible definition of “distance”, there are 
numerous others that could have been chosen
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Continuous K-L distance

• A proposed model M predicts the probability density
of seeing outcome x as g(x)

– i.e. f(x) and g(x) are probability density functions
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Burnham and Anderson (2002) pages 50-64



K-L distance

• To calculate I we need to know the true set of probabilities pi

– In practice we don’t know them!

• We also need to know the parameter values of our model so we 
can calculate πi

• If we wish to use model g to approximate the truth (f) and make 
predictions, then the best parameters of our model are those that 
minimize I
– i.e. the structure of the model (g) must be the same as the true model 

(f), and the parameterization of g must be correct (minimize I)
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K-L distance

• In reality, we do not know the truth, and 
therefore cannot use the Kullback-Leibler
distance to find the best parameters for a model.

• Instead model parameters must be estimated 
from our data (i.e. model fit to the data)

• We can estimate K-L distance using maximum 
log-likelihoods 
– (maximum likelihood parameter estimation (MLE))



Maximum Likelihood Estimation (MLE)

• Likelihood: x data outcomes, θ parameters

• Likelihood of θ given x

• Maximizing the likelihood value therefore 

gives the parameter values that allow the 

mode to best approximate the data
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Estimating K-L distance

• Akaike (1973) proposed K-L distance as a basis for 
model selection

– For a given model there exists a set of parameter 
values that minimizes the K-L distance

– We do not know this set of values, instead, we 
estimate them using maximum likelihood estimation 
(MLE)

– Akaike found that MLEs bias the approximation of K-L 
distance

– The more parameters the stronger the bias

• We should therefore correct for this bias



AIC
• A relative estimation of K-L distance for a give 

model, referred to as the Akaike Information 
Criterion (AIC) is:
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Where:
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,} is the set of K model 

parameters  estimated using MLE

# = {#�, … , #/} is the set of N data

K is the number of parameters

LL(�1)is the maximum log-likelihood of the 

model given the data 



AIC

• AIC should be interpreted as:
– Twice the expected K-L distance, minus some unknown constant

(C, model specific), if the experiment or data collection were 
repeated many times.

• It is important to remember that AIC is an estimate of the 
K-L distance, and as such the model with the lowest AIC 
may not actually have the lowest  K-L distance

• However, the model with the smallest AIC value is more 
likely to be the most parsimonious model from the set of 
candidate models based on K-L distance
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AICc

• AIC works well when there is:
– Lots of data (i.e. there are a large number of potential 

outcomes)

– The proposed data can potentially fit the data well

• When there is not a lot of data (i.e. N/K is small) a 
“corrected” AIC works better (AICc)
– The rule of thumb is use AICc if the number of 

independent data points (N) per parameter in the 
model is less than 40.
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Applying AIC and AICc

• AIC estimates K-L distance for each model but the 
estimate includes an unknown constant (C) (which 
depends on the model and the “truth” which is 
unknown.

• Because of this, the absolute magnitude of the AIC 
values are meaningless!

• Differences in AIC values among models are important

• Where min[…] refers to the minimum AIC value of all 
models considered
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AIC ∆-values

Model AIC ∆ Rank

m1 277.58 3.4 3

m2 288.38 14.2 6

m3 274.18 0 1

m4 279.88 5.7 4

m5 275.93 1.75 2

m6 285.78 11.6 5



Applying AIC ∆-values
• Rules of thumb

– Models with a ∆-value greater than 10 are very unlikely to be 
the model with the lowest K-L distance and can be disregarded.

– Models with a ∆-value between 4 and 7 are less likely to be the 
model with the lowest K-L distance but should not e 
disregarded.

– Models with ∆-values less than 2 are all likely to be the model 
with the lowest K-L distance.

• Important: 
– For the ∆-values to provide useful information at least one of 

the proposed models must describe the data reasonably well

– i.e. AIC cannot choose a good model if all the candidate models 
are poor



AIC weights

• An alternative approach is to calculate AIC 
weights for each model

– Where G is the number of proposed models (G 
weights sum to 1)

– Weight : 67 can be interpreted as:
• The “weight of evidence” that model Mm is the model, out 

of those proposed, having the lowest K-L distance.

• NOT, the probability that the model has the lowest K-L 
distance
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Other information criterion

• Bayesian information criterion (BIC)

– More strongly penalized number of parameters

• Deviance information criterion (DIC)

– Modification of AIC for hierarchical model comparison

– Often used with Bayesian models
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Aho, K.; Derryberry, D.; Peterson, T. (2014), "Model selection for 

ecologists: the worldviews of AIC and BIC", Ecology 95: 631–636



AIC in R

• AIC(model, k=2)

• AIC(model1,model2,k=2)
– K is the penalty per parameter to be used 

(k = 2 in classic AIC)

– model object must have logLink method (i.e. log-likelihood can be 
calculated)

• extractAIC(model,k=2)
– Model objects from “lm”,”aov”,”glm”,”coxph”,”suvreg”
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AIC in R

• Mod1 <- lm(bmass ~ pop + age + pop*age + height^2)

• Mod2 <- lm(bmass ~ pop + age + pop*age)

• AIC(Mod1, Mod2,k=2)

• Model selection

– 4 terms, 1 interaction

– 9 models


