NRES_798_14_201501

Survival Analysis

		Lecture	Due
Friday	March 20	Generalized additive models	
Monday	March 23		Return paper 1
Wednesday	March 25	Survival analysis	
Friday	March 27	Model selection	
Monday	March 30		
Wednesday	April 1	Time series analysis	
Friday	April 3	UNBC closed good Friday	
Monday	April 6	UNBC closed Easter Monday	
Wednesday	April 8	Spatial statistics	
Friday	April 10	Regression trees (data mining)	
Monday	April 13		Lab/lecture Final
Wednesday	April 15	Multivariate statistics	
Friday	April 17	Mixed-effects models	Final paper

First report

- Hypothesis/model to be tested (15%)
 - Scientific rational for analysis
 - Framing the scientific question in statistically appropriate way
- Description of data (5%)
 - Experimental design, dependent & independent variables
 - Descriptive statistics, distributions, outliers
- Limitations of data (10%)
 - Problems
 - Experimental design limitation, sampling restraints, measurement error
- Sources of uncertainty/variability (10%)
 - What types of uncertainty can be examined, and what is unknown
- Historical approaches used for analysis (20%)
- Alternative statistical approaches (40%)
 - Comparative: strengths, weaknesses and differences of alternative approaches
 - Limitation (inappropriate because ...)

Final report

- Scientific paper with heavy emphasis placed on statistical analysis
 - Statistics methods paper
 - Intro (15)
 - Scientific question, emphasis on statistical framing of hypothesis being tested
 - Description of statistical "problem"
 - Description of why stats matter
 - Description of statistical approaches
 - Methods (15)
 - Statistically oriented, clear description of stats applied
 - Results (30)
 - Presentation interpretation
 - Discussion (30
 - Detailed interpretation of statistical results
 - Evaluation of shortcomings of analysis
 - Discussion of results in the context of
 - Literature cited (5)
 - Appendix: R code for analysis (5)

Survival analysis

- Examines and models the time it take for events to occur
 - The event can be death, therefor "Survival analysis"
- Other names
 - "event-history analysis" : sociology
 - "failure-time analysis" : engineering

Survival analysis

- Classically, the analysis focuses on time to death
 - But can be used anywhere you want to know what factors affect the time **for** an event to occur:
 - Germination timing
 - Arrival of a migrant or parasite
 - Dispersal of seeds or offspring
 - Failure time in mechanical systems
 - Response to stimulus

Survival data

- Start of observation period (not real time)
- Time from start that event occurs

Challenges with this type of data?

Censoring: dealing with uncertain data

- Censored survival times:
 - problem when event has not occurred (within the observation time) or the exact time of event is not known.
- Right censoring:
 - Where the date of death is unknown but is after some known date
 - true survival time > observed survival time

e.g.

- Organism alive at end of the observation period (study)
- Subject is removed from the study
 - animal escapes, animal gets lost, plant gets eaten, etc.

Censoring

Censoring

- Left censoring:
 - Occurs when a subject's survival time is incomplete on the left side of the follow-up period.
 - True survival time < Observed survival time
 - Exact timing of event is uncertain: e.g..

e.g.

 We want to know time to infection, but only assess infection when tested

Censoring must be independent of the event being looked at

Censoring

Survival

- Survival time T may be though of as a random variable
- T can be represented as a probability density function
- The simplest parametric model is the exponential distribution, with density function:

$$\mathsf{p}(t) = \lambda e^{-\lambda t}$$

- In this distribution there is a single rate parameter (λ)
 - In this distribution the rate is assumed to be constant over time
- Other distributions (that are based on more biologically/ecologically sound principles) can also be used: Gompertz, Weibull, Gamma

Survival function: S(t), survival curve

- The survival function gives probability of surviving to time t.
 - i.e. the proportion of the population still without the event by time t.
- The survival function is the complement of the cumulative distribution function.

$$S(t) = \Pr(T > t) = 1 - P(t)$$

- **Hazard rate** is the continuous analog of an age-specific mortality rate.
 - i.e. the probability of dying at time t (death between time t1 and t2)
- **Hazard function [h(t)]** is the hazard rate as a function of survival time.
 - Give the instantaneous potential per unit time for the event to occur, given the individual has survived to time t
 - e.g. the hazard of death in human populations is relatively high in infancy, declines during childhood, stays relatively steady during early adult hood, and rises through middle and old age.
 - This is why the exponential distribution (which assumes a constant hazard rate) is not appropriate to use in a survival analysis of human (biological) populations

Estimated/Empirical survival curves

- Survival curve is estimated by Kaplan-Meier (KM) estimator, also know as "product estimator"
- The Kaplan-Meier estimate is a nonparametric maximum likelihood estimate of the survival function, S(t)

 The estimate is a step function with jumps at observe event times

Kaplan-Meier estimate

Using explanatory variable to inform survival time estimates

- Parametric models
 - GLM framework using:
 - Exponential, gamma, lognormal or Weibull distribution
 - Use function survfit()
- Non-parametric models
 - Cox proportional hazards model
 - Use function coxph()

Cox Proportional Hazard Model

 Popular model for survival analysis because its simple and makes no assumption about the survival distribution

$$h_i(t) = h_o(t) \exp(\beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik})$$

$$h_i(t|age) = h_o(t)\exp(\beta_1 X_{i1} + age * \beta_1)$$

Is a semi-parametric model

Age at beginning of observation

- The baseline hazard function is unspecified
- The effects of the covariates are multiplicative
- The model doesn't make any arbitrary assumptions about the shape/form of the baseline hazard function

Cox proportional hazards model

Assumptions

- Covariates multiply the hazard by some constant
 - e.g. drug may halve a subjects risk of death at any time
- The effect of the covariate is the same at any point in time.

Goals of survival analysis

- Estimate and interpret survival and hazard functions from survival data (descriptive statistics)
- 2. Compare survival and/or hazard functions (two-sample mean test)
- 3. Assess the relationship of explanatory variables to survival time (regression analysis)

Survival analysis in R

- "survival" package
- Survival analysis components (functions)
 - Surv(): Defines a survival object
 - survdiff(): determines if two survival curves differ using a log-rank test
 - survfit(): fits a survival curve to a model or function, using Kaplan-Meier estimates. Parametric
 - coxph(): Runs a cox PH regression (Cox proportional hazards model). Non-parametric

Survival in R

- The response variable defined by Surv() includes:
 - Start time (after study start)
 - Stop time (after study start)
 - Whether or not an event occurred

 Allows for censoring issues to be accounted for in data structure

Survival Analysis

- Example 1
 - Survival of tree seedlings
 - Does size of canopy gap influence survival

>	<pre>> head(seedlings)</pre>						
	cohort	death	gapsize				
1	Septembe	r 7	0.5889				
2	Septembe	r 3	0.6869				
3	Septembe	r 12	0.9800				
4	Septembe	r 1	0.1921				
5	Septembe	r 4	0.2798				
6	Septembe	r 2	0.2607				

Survival analysis

Survival differences between cohorts?

model <- survfit(Surv(death,status)~cohort,data=seedlings)

model <- survfit(Surv(death,status)~cohort,data=seedlings)</pre>

Call: survfit(formula = Surv(death, status) ~ cohort, data = seedlings)

records n.max n.start events median 0.95LCL 0.95UCL

cohort=October	30	30	30	30	4.5	3	9
cohort=September	30	30	30	30	3.5	2	7

Differences between cohorts?

Survival analysis Cox's Proportional Hazard

model1 <- coxph(Surv(death, status)~strata(cohort)*gapsize)

```
Call:
coxph(formula = Surv(death, status) ~ strata(cohort) * gapsize)
n= 60, number of events= 60
                                   coef exp(coef) se(coef) z Pr(>|z|)
gapsize
                                  -1.1863 0.3054 0.6210 -1.910 0.0561.
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                                   exp(coef) exp(-coef) lower .95 upper .95
gapsize
                                    0.3054 3.2749 0.09042 1.031
strata(cohort)cohort=September:gapsize 1.7852 0.5602 0.35341 9.018
Concordance = 0.659 (se = 0.077)
Rsquare= 0.076 (max possible= 0.993)
Likelihood ratio test= 4.73 on 2 df, p=0.09372
             = 4.89 \text{ on } 2 \text{ df}, p=0.08682
Wald test
Score (logrank) test = 5.04 on 2 df, p=0.08046
```


• Example 2

Survival Analysis

- Survival of Cockroaches to three insecticide applications (A,B,C)
- Does weight of the animal influence their survivorship?

	death	status	weight group
1	20	1	5.385 A
2	34	1	7.413 A
3	1	1	9.266 A
4	2	1	6.228 A
5	3	1	5.229 A
6	3	1	9.699 A

> summary(insects)

death	status	weight	group
Min. : 1.00	Min. :0.0000	Min.: 0.055	A:50
1st Qu.: 1.00	1st Qu.:1.0000	1st Qu.: 2.459	B:50
Median : 7.00	Median :1.0000	Median : 6.316	C:50
Mean :15.17	Mean :0.8667	Mean: 9.390	
3rd Qu.:21.00	3rd Qu.:1.0000	3rd Qu.:11.955	
Max. :50.00	Max. :1.0000	Max. :42.090	

Survival analysis

- Create a survival analysis data object
 - sdat <- Surv(insects\$death,insects\$status)</p>

	death	status
1	20	1
2	34	1
3	3	1

- Fit a survival curve to the raw data, seperating by group (treatment) sdat_fit <- survfit(sdat~insects\$group)
- Plot the fitted curves
 plot(sdat_fit,lty=c(1,3,5),col=c("red","purple","blue"),ylab="Survivorship",xlab="Time")

Survival analysis

Parametric and non-parametric models

```
# Create the response variable sdat <- Surv(insects$death,insects$status)

# Parametric model pmod <- survreg(sdat~insects$weight*insects$group,dist="weibull")

# Cox proportional hazards regression model non_pmod <- coxph(sdat~insects$weight*insects$group)
```

Parametric survival analysis

> summary(pmod)

Call:

survreg(formula = sdat ~ insects\$weight * insects\$group, dist = "weibull")

	Value	Std. Error	Z	р
(Intercept)	3.9506	0.5308	7.443	9.84e-14
insects\$weight	-0.0973	0.0909	-1.071	2.84e-01
insects\$groupB	-1.1337	0.6207	-1.826	6.78e-02
insects\$groupC	-1.9841	0.6040	-3.285	1.02e-03
insects\$weight:insects\$grou	ipB 0.0826	0.0929	0.889	3.74e-01
insects\$weight:insects\$grou	ıpC 0.0931	0.0930	1.002	3.16e-01
Log(scale)	0.3083	0.0705	4.371	1.24e-05

Scale= 1.36

Weibull distribution

Loglik(model)= -469.6 Loglik(intercept only)= -483.3 Chisq= 27.42 on 5 degrees of freedom, p= 4.7e-05

Number of Newton-Raphson Iterations: 5

n= 150

```
> summary(non_pmod)
```

Cox ph survival analysis

Call:

coxph(formula = sdat ~ insects\$weight * insects\$group)

n= 150, number of events= 130

	coef	exp(coef) se(coef)	z Pr(> z)	
insects\$weight	0.06330	1.06535 0.06738	0.940	0.34747
insects\$groupB	0.79098	2.20555 0.45641	1.733	0.08309 .
insects\$groupC	1.28634	3.61953 0.45243	2.843	0.00447 **
insects\$weight:insects\$groupB	-0.05568	0.94585 0.06878	-0.809	0.41824
insects\$weight:insects\$groupC	-0.05869	0.94300 0.06897	-0.851	0.39481

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
exp(coef) exp(-coef) lower .95 upper .95
```

```
insects$weight 1.0654 0.9387 0.9336 1.216
insects$groupB 2.2056 0.4534 0.9016 5.395
insects$groupC 3.6195 0.2763 1.4912 8.785
insects$weight:insects$groupB 0.9458 1.0573 0.8266 1.082
insects$weight:insects$groupC 0.9430 1.0604 0.8238 1.079
```

```
Concordance= 0.608 (se = 0.034)

Rsquare= 0.135 (max possible= 0.999)

Likelihood ratio test= 21.83 on 5 df, p=0.0005645

Wald test = 20.75 on 5 df, p=0.000903

Score (logrank) test = 22.05 on 5 df, p=0.0005132
```

pmod1 <- survreg(sdat~insects\$group,dist="weibull") non_pmod1 <- coxph(sdat~insects\$group)</pre>

> summary(pmod1)

	Value	Std. Error	Z	р
(Intercept)	3.459	0.2283	15.15	7.20e-52
insects\$groupB	-0.822	0.3097	-2.65	7.94e-03
insects\$groupC	-1.540	0.3016	-5.11	3.28e-07
Log(scale)	0.314	0.0705	4.46	8.15e-06

> summary(non_pmod1)

	coef	exp(coe	f) se(coef)	Z	Pr(> z)
insects\$groupB	0.5607	1.7520	0.2257	2.485	0.013 *
insects\$groupC	1.0084	2.7412	0.2263	4.456	8.33e-06 ***

