NRES 798 Statistical Methods for Ecologists

Ché Elkin Room 8-332 960-5004 Che.Elkin@unbc.ca

Course objective

- Tools for graduate work
 - Project, assisted self-learning
- Tools for ecological understanding and evaluation
- Tools for future statistical analysis

Lecture	Торіс				
1	Ecological questions and statistical approaches				
2	Probability, probability distributions, and frameworks for statistical analysis 1				
3	Probability, probability distributions, and frameworks for statistical analysis 2				
4	Exploring data properties (Outliers, transformations)				
5	Experimental and sampling design 1				
6	Experimental and sampling design 2				
7	Linear models 1				
8	Linear models 2				
9	Linear models 3				
10	Linear models 4				
11	Generalized linear models 1				
12	Generalized linear models 2				
13	Analyzing time series 1				
14	Analyzing time series 2				
15	Spatial statistics 1				
16	Spatial statistics 2				
17	Generalized Additive models 1				
18	Generalized Additive models 2				
19	Model selection 1				
20	Model selection 2				
21	Bayesian analysis 1				
22	Bayesian analysis 2				
23	Data mining				
24	Multivariate analysis				

Lecture outline

Labs

- Hands-on application of statistical methods
- R environment
 - Free
 - Powerful, flexible
 - Very common platform for ecologists
- Work through real data examples

Grading

- Project first report
 Feb. 13th, 30%
- Project final report
 - April. 17th, 45%
- Lab exam
 - Lecture and lab component

- 25%

Project aim

Design and perform the statistical analysis of a real world data set

- Assess the strengths and limitations of the data
- Compare and contrast the applicability of various statistical approaches
- Perform a "complex" statistical analysis (using R)
- Interpret and critically evaluate the strengths and weaknesses of the analysis

First report

- Hypothesis/model to be tested (15%)
 - Scientific rational for analysis
 - Framing the scientific question in statistically appropriate way
- Description of data (5%)
 - Experimental design, dependent & independent variables
 - Descriptive statistics, distributions, outliers
- Limitations of data (10%)
 - Problems
 - Experimental design limitation, sampling restraints, measurement error
- Sources of uncertainty/variability (10%)
 - What types of uncertainty can be examined, and what is unknown
- Historical approaches used for analysis (20%)
- Alternative statistical approaches (40%)
 - Comparative: strengths, weaknesses and differences of alternative approaches
 - Limitation (inappropriate because ...)

Final report

- Scientific paper with heavy emphasis placed on statistical analysis
 - Statistics methods paper
 - Intro
 - Scientific question, emphasis on statistical framing of hypothesis being tested
 - Description of statistical "problem"
 - Description of why stats matter
 - Description of statistical approaches
 - Methods
 - Results
 - Discussion
 - Detailed interpretation of statistical results
 - Evaluation of shortcomings of analysis
 - Discussion of results in the context of
 - Literature cited
 - Appendix: R code for analysis

Final report

Examples: ecological statistics methods paper

- Environmental and Ecological Statistics
 - Editors-in-Chief: P. Dutilleul; B.F.J. Manly
 - <u>http://www.springer.com/life+sciences/ecology/jo</u> <u>urnal/10651</u>
- Ecological applications
- Journal of Ecology....

Ecological Applications, 19(3), 2009, pp. 631–642 © 2009 by the Ecological Society of America

> Modeling abundance using *N*-mixture models: the importance of considering ecological mechanisms

Liana N. Joseph, 1,3 Ché Elkin, 1 Tara G. Martin, 2 and Hugh P. Possingham 1

- Scientific question
 - How to accurately estimate species abundance from survey data
- Description of statistical "problem"
 - Statistical models of abundance often don't include detection error
 - Need to separate true variation from false variation (sampling error)
 - Not present Not observed; Present Not observed
 - Not present Observed, Present Observed
 - Large number of "zero" observations can skew abundance data
- Description of why stats matter
 - Not accounting for detection error and zero inflation can lead to spurious abundance estimates, and consequently incorrect conservation actions
- Description of statistical approaches
 - N-mixture model
 - Poisson, zero-inflated Poisson
 - Negative binomial, zero-inflated negative binomial

Report data

- Own data
- Lab group data
- Department data
- Published data
 - Old, well known.
 - Ecological applications, Ecological Monographs, Oikos
 - Data archiving

Ecological data

Data sources

- Ecological Data Wiki
 - <u>http://ecologicaldata.org/</u>
- Ecological Society of America Data Registry
 - <u>http://data.esa.org/esa/style/skins/esa/index.jsp</u>
- DRYAD
 - <u>http://www.datadryad.org/</u>
- LTER: Long Term Ecological Research network
 - <u>http://metacat.lternet.edu/das/lter/index.jsp</u>

Data lists

- NCEAS: Ecological and spatial data sources
 - <u>https://www.nceas.ucsb.edu/scicomp/data</u>
- UC Berkeley: Data repositories
 - <u>http://www.lib.berkeley.edu/BIOS/data_environment.html</u>
- Duke University: Data repositories
 - http://guides.library.duke.edu/content.php?pid=177435&sid=1709958

Be specific Be respectful Metadata is essential

LTER Home Intranet LNO		LTER Site Home Pages	Go		Search		
LTER		erm Ecolog	N	etwork			
A founding member of the International Long Term Ecological Research Network							
Login	В	rowse the LTER I	Data Portal				
Search		Alternative: <u>Multi-lev</u>	el Browse				
Browse	Browse by category using the links below. The number of matching data sets (when non-LTER data are included) is shown in parentheses. <i>Please note: Only public documents are accessible from this page.</i>						
Include non-LTER data							
LTER sites							
	(243), FCE (146), GCE (LNO (360), LUQ (124),	, <u>BES (591)</u> , <u>BNZ (483)</u> , <u>CA</u> 385), <u>HBR (124)</u> , <u>HFR (216</u> <u>MCM (205)</u> , <u>MCR (67)</u> , <u>NIN</u> <u>0), SEV (213)</u> , <u>SGS (74)</u> , <u>VC</u>), JRN (140), KBS (91), H V (117), NTL (198), NWT	KNZ (74),			
animals							
	insects (863), microarthr	(15), invertebrates (1163), c opods (9), crustaceans (60), 1 s (49), vertebrates (1046), an (300), reptiles (37)	larvae (24), macroinverte	brates (35),			
	atmospheric properties						
		eric pressure (97), <u>dew point</u> precipitation (893), <u>weather</u>), <u>climate</u>			

"Point count bird censusing: long-term monitoring of bird distrubution and diversity in central Arizona-Phoenix: period 2000 to 2011" - Shochat Katti Warren

LTER Identifier:

knb-lter-cap.46.11

Abstract:

Project Goal: To study the patterns in bird species diversity, abundance and distribution over time and space, and the processes behind these patterns as a result of urbanization.

Owners/Creators:

Shochat Katti Warren

Metadata:

Select here for full metadata

Data File(s):

- <u>34_birds_1.csv</u>
- <u>34_surveys_1.csv</u>
- <u>34_sites_1.csv</u>

Report data

- Simple data will not be easy data to use
- Big (but not too big)
- Clear question in mind?
 - Scientific hypothesis
 - Model testing
- Incorporate real sampling or experimental design constraints
- Incorporate multiple variables
- Time invested in getting good data will pay large dividends later

Background

- Name
- Ecological area
 - E.g. Population ecology, environmental impact assessment, conservation biology...
- Ecological question(s)
 - ?
- Type of statistics
 - ANOVA, spatial, time series, Bayesian...
- Statistical platforms
 - SPSS, STATA, Cran R, ??
- Past statistical experience
 - T-test, Contingency table, ANOVA...