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Generalized linear model 

Logistic regression 



The General Linear Model 

In a general linear model 

 

 

 

the response yi is modelled by a linear function 
of explanatory variables xi, plus an error term 

𝑦𝑖 = 𝐵0 +  𝐵1𝑥𝑖 + ⋯ + 𝐵𝑝𝑋𝑝 + 𝜀𝑖  



General and Linear Model 

Here general refers to the dependence on 
potentially more than one explanatory variables, 
v.s. the simple linear model: 

 

The model is linear in the coefficients, 

 

 

but not 

 

𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖 + 𝜀𝑖  





Restrictions of Linear Models 

Although a useful framework, there are some situations 
where general linear models are not appropriate 

 

• the range of Y is restricted (e.g. binary, count) 

• the variance of Y depends on the mean 

 

Generalized linear models extend the general linear 
model framework to address both of these issues 

 

  



GLM potential response variables 

• Count data expressed as proportions 
– E.g. proportion male 

 

• Count data that are not proportions 
– E.g. bounded population data (negative values meaningless) 

 
• Binary response variables 

– e.g. present or absent, dead or alive 

 
• Data on time to death where the variance increases faster 

than linearly with the mean 



Generalized Linear Models (GLMs) 

A generalized linear model is made up of three things: 
• a linear predictor 
 
 
 
and two functions 
• a link function that describes how the mean, E(Yi) = ui  depends on the 

linear predictor 
 
 
 

• An  variance function that describes how the variance, var(Yi) depends on 
the mean 
 
 
 

where the dispersion parameter φ is a constant 

𝑛𝑖 = 𝐵0 + 𝐵1𝑥𝑖 + ⋯ + 𝐵𝑝𝑋𝑝 

𝑔 𝜇𝑖 = 𝑛𝑖 

𝑔 𝑌𝑖 = ∅𝑉(𝜇) 

Error structure 



Normal General Linear Model as a 
Special Case 

For the general linear model with 𝜖 ~ 𝑁(0, 𝜎2) we 
have the linear predictor 

 

 

the link function 

 

 

And the variance function  

𝑛𝑖 = 𝐵0 + 𝐵1𝑥𝑖 + ⋯ + 𝐵𝑝𝑋𝑝 

𝑔 𝜇𝑖 = 𝜇𝑖 

V 𝜇𝑖 = 1 
Error structure 



Error structure 

• When standard normal error fails 

 

• Errors are strongly skewed 

• Errors are kurtotic 

• Errors are strictly bounded 
– e.g. proportions (0, 1) 

• Error that can’t lead to negative fitted values 
– e.g. counts 

𝜀𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2) 



Possible GLM error distributions 

• Poisson error: count data 
 

• Binomial error: proportions data 
 

• Gamma errors: data with a constant 
coefficient of variation 
 

• Exponential errors: data on time of death 
(survival analysis) 



Transformations vs. GLM 

In some situations a response variable can be 
transformed to improve linearity and homogeneity of 
variance so that a general linear model can be 
applied. 
 
This has some drawbacks 
• response variable has changed! 
• transformation must simultaneously improve 

linearity and homogeneity of variance 
• transformation may not be defined on the 

boundaries of the sample space 











Probability of Norway spruce 
occurrence along an altitudinal 
gradient 

GLM: Logistic regression, binomial family 



GLM: Poisson regression, Poisson family 



GLM: Survival analysis   

Exponential distribution 
Weibull distribution 
Gamma distribution 



Overview 
• Logistic Regression 
• Logistic regression is useful when you are predicting a binary 

outcome from a set of continuous predictor variables. 
 

• Poisson Regression 
• Poisson regression is useful when predicting an outcome variable 

representing counts from a set of continuous predictor variables. 
 

• Survival Analysis 
• Survival analysis (also called event history analysis or reliability 

analysis) covers a set of techniques for modeling the time to an 
event.  

• Data may be right censored - the event may not have occurred by 
the end of the study or we may have incomplete information on an 
observation but know that up to a certain time the event had not 
occurred (e.g. the participant dropped out of study in week 10 but 
was alive at that time).  


