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Generalized linear model

Logistic regression



The General Linear Model

In a general linear model

Vi = BO + lei + -+ Bpo + &

the response y, is modelled by a linear function
of explanatory variables x, plus an error term



General and Linear Model

Here general refers to the dependence on
potentially more than one explanatory variables,

v.s. the simple linear model:
Yl:b0+ b1Xl'+ gi
The model is linear in the coefficients,

yi = Po + b1 + Paxi + €

Yy = Bo + 710111 + exp(Fo)rs + €
but not |

Yi = o + -'--")15-'*-""13E + €;

Yi = Poexp(fir1) + €



Error structure

We assume that the errors ¢; are independent and identically
distributed such that

E[Eﬂ =0

and var|e;| = o2

Typically we assume
ei ~ N(0,0%)

as a basis for inference,



Restrictions of Linear Models

Although a useful framework, there are some situations
where general linear models are not appropriate

* the range of Y is restricted (e.g. binary, count)
e the variance of Y depends on the mean

Generalized linear models extend the general linear
model framework to address both of these issues



GLM potential response variables

Count data expressed as proportions
— E.g. proportion male

Count data that are not proportions
— E.g. bounded population data (negative values meaningless)

Binary response variables
— e.g. present or absent, dead or alive

Data on time to death where the variance increases faster
than linearly with the mean



Generalized Linear Models (GLMs)

A generalized linear model is made up of three things:
* alinear predictor

n; =By + Byx; + -+ ByX,
and two functions

* alink function that describes how the mean, E(Yi) = ui depends on the
linear predictor

gu;) =ny

* An variance function that describes how the variance, var(Yi) depends on
the mean

g(¥;) =0V (w

where the dispersion parameter ¢ is a constant Error structure



Normal General Linear Model as a
Special Case

For the general linear model with e ~ N(0, 0%) we
have the linear predictor

Tli = BO + lei + -+ Bpo
the link function

guy) =

And the variance function

—  Error structure

V() =1



Error structure
g;~Normal(0, c?)

When standard normal error fails

Errors are strongly skewed
Errors are kurtotic

Errors are strictly bounded
— e.g. proportions (0, 1)
Error that can’t lead to negative fitted values

— e.g.counts



Possible GLM error distributions

e Poisson error: count data
* Binomial error: proportions data

e Gamma errors: data with a constant
coefficient of variation

* Exponential errors: data on time of death
(survival analysis)



Transformations vs. GLM

In some situations a response variable can be
transformed to improve linearity and homogeneity of
variance so that a general linear model can be
applied.

This has some drawbacks
* response variable has changed!

e transformation must simultaneously improve
linearity and homogeneity of variance

e transformation may not be defined on the
boundaries of the sample space



The glm Function

Generalized linear models can be fitted in R using the glm function,
which is similar to the 1m function for fitting linear models.

The arguments to a glm call are as follows

glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart, offset,
control = glm.control(...), model = TRUE,
method = "glm.fit", x = FALSE, y = TRUE,
contrasts = NULL, ...)



Formula Argument

The formula is specified to glm as, e.g.

y ~ x1 + x2

where x1, x2 are the names of

» numeric vectors (continuous variables)

» factors (categorical variables)



Other symbols that can be used in the formula include

a:b for an interaction between a and b

a*xb which expandstoa + b + a:b

. for first order terms of all variables in data
- to exclude a term or terms

1 to include an intercept (included by default)

Yy v v v v Y

0 to exclude an intercept



Family Argument

The family argument takes (the name of) a family function which
specifies

» the link function
» the variance function

» various related objects used by glm, e.g. 1inkinv

The exponential family functions available in R are

» binomial (link = "logit")

» gaussian(link = "identity")

» Gamma(link = "inverse")

» inverse.gaussian(link = "1/mu®")
» poisson(link = "log")



GLM: Logistic regression, binomial family
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GLM: Poisson regression, Poisson family
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GLM: Survival analysis

Survival Distributions by Gender
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Overview

Logistic Regression

Logistic regression is useful when you are predicting a binary
outcome from a set of continuous predictor variables.

Poisson Regression

Poisson regression is useful when predicting an outcome variable
representing counts from a set of continuous predictor variables.

Survival Analysis

Survival analysis (also called event history analysis or reliability
analysis) covers a set of techniques for modeling the time to an
event.

Data may be right censored - the event may not have occurred by
the end of the study or we may have incomplete information on an
observation but know that up to a certain time the event had not
occurred (e.g. the participant dropped out of study in week 10 but
was alive at that time).



