BIOL 410 Population and Community Ecology

Age structured populations Sampling population density

Predicting Age Structure

x	i	S(x)	l(x)	g(x)	b(x)	\boldsymbol{P}_i	\boldsymbol{F}_i	l(x) b(x)	l(x) b(x) x	$e^{-rx}l(x)b(x)$
0		500	1.0	0.8	0			0.0	0.0	0.0
1	1	400	0.8	0.5	2	0.80	1.60	1.6	1.6	0.736
2	2	200	0.4	0.25	3	0.50	1.50	1.2	2.4	0.254
3	3	50	0.1	0	1	0.25	0.25	0.1	0.3	0.010
4	4	0	0		0	0	0	0.0	0.0	0.0
								$\Sigma =$ 2.9	$\Sigma = 4.3$	$\Sigma = 1.0$

$$n_1(t+1) = F_1n_1(t) + F_2n_2(t) + F_3n_3(t) + F_4n_4(t)$$

$$n_2(t+1) = P_1n_1(t)$$

$$n_3(t+1) = P_2n_2(t)$$

$$n_4(t+1) = P_3n_3(t)$$

Representing Growth in matrix of k x k age classes

x	i	l(x)	b(x)	\boldsymbol{P}_i	\boldsymbol{F}_{i}
0		1.0	0		
1	1	0.8	2	0.80	1.60
2	2	0.4	3	0.50	1.50
3	3	0.1	1	0.25	0.25
4	4	0	0	0	0

$$A = \begin{bmatrix} F_1 & F_2 & F_3 & F_4 \\ P_1 & 0 & 0 & 0 \\ 0 & P_2 & 0 & 0 \\ 0 & 0 & P_3 & 0 \end{bmatrix}$$
$$A = \begin{bmatrix} 1.6 & 1.5 & 0.25 & 0 \\ 0.80 & 0 & 0 & 0 \\ 0 & 0.50 & 0 & 0 \\ 0 & 0 & 0.25 & 0 \end{bmatrix}$$

 Forecasting future age structure (n at time t+1) based current population structure (n at time t) using Fertility and Survival Probability from the Leslie Matrix.

$$n(t+1) = A n(t)$$

$$n(t+1) = \begin{bmatrix} F_1 & F_2 & F_3 & F_4 \\ P_1 & 0 & 0 & 0 \\ 0 & P_2 & 0 & 0 \\ 0 & 0 & P_3 & 0 \end{bmatrix} x \begin{pmatrix} n_1 \\ n_2 \\ n_3 \\ n_4 \end{pmatrix}$$

Matrix algebra

- Product of a square matrix and a column matrix (vector) is a column matrix
- Useful for solving linear equations

Examples of Using Leslie Matrix

• Start with a cohort of 200 individuals in age-class 1 with the Fertility and Survival probabilities in our example:

Examples of Using Leslie Matrix

$$n(t+1) = \begin{bmatrix} \mathbf{F_1} & \mathbf{F_2} & \mathbf{F_3} & \mathbf{F_4} \\ \mathbf{P_1} & 0 & 0 & 0 \\ 0 & \mathbf{P_2} & 0 & 0 \\ 0 & 0 & \mathbf{P_3} & 0 \end{bmatrix} \mathbf{x} \begin{pmatrix} n_1 \\ n_2 \\ n_3 \\ n_4 \end{pmatrix} = \begin{bmatrix} 1.6 & 1.5 & 0.25 & 0 \\ 0.8 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.25 & 0 \end{bmatrix} \mathbf{x} \begin{pmatrix} 200 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$n(t+1) = \begin{bmatrix} 1.6(200) + & 1.5(0) + & 0.25(0) + & 0(0) \\ 0.8(200) + & 0(0) + & 0(0) + & 0(0) \\ 0(200) + & 0.5(0) + & 0(0) + & 0(0) \\ 0(200) + & 0(0) + & 0.25(0) + & 0(0) \end{bmatrix}$$

$$n(t+1) = \begin{bmatrix} 320\\ 160\\ 0\\ 0 \end{bmatrix}$$

Age structured growth - one time step
A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE)</pre>

[,1] [,2] [,3] [,4] [1,] 1.6 1.5 0.25 0 [2,] 0.8 0.0 0.00 0 [3,] 0.0 0.5 0.00 0 [4,] 0.0 0.0 0.25 0

N0 <- matrix(c(200,0,0,0),ncol=1)

[,1] [1,] 200 [2,] 0 [3,] 0 [4,] 0 N1 <- A %*% N0 [,1] [1,] 320 [2,] 160 [3,] 0 [4,] 0

A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE)
N0 <- matrix(c(200,0,0,0),ncol=1)</pre>

```
years <- 6
N.projections <- matrix(0,nrow=nrow(A),ncol = years +1)
N.projections[,1]<- N0</pre>
```

```
for(year in 1:years){
    N.projections[,year+1]<- A %*% N.projections[,year]
}</pre>
```

Year

		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]
	[1,]	200	320	752	1607.2	3505.92	7613.312	16549.12
Age class	[2,]	0	160	256	601.6	1285.76	2804.736	6090.65
	[3,]	0	0	80	128	300.8	642.88	1402.368
	[4,]	0	0	0	20	32	75.2	160.72

A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE)
N0 <- matrix(c(200,0,0,0),ncol=1)</pre>

```
years <- 6
N.projections <- matrix(0,nrow=nrow(A),ncol = years +1)
N.projections[,1]<- N0</pre>
```

```
for(year in 1:years){
    N.projections[,year+1]<- A %*% N.projections[,year]
}</pre>
```


Year

Leslie Matrix (different starting structure)

```
A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE)
N0 <- matrix(c(50,50,50,50),ncol=1)</pre>
```

```
years <- 6
N.projections1 <- matrix(0,nrow=nrow(A),ncol = years +1)
N.projections1[,1]<- N0
for(year in 1:years){
    N.projections1[,year+1]<- A %*% N.projections1[,year]
}</pre>
```

```
\mathsf{P}_{\mathsf{r}} = \mathsf{P}_{\mathsf{r}} =
```

Age distribution

- Dynamics initially strongly influenced by starting population age distribution
- However, populations quickly approach a stable and stationary age distribution

Stable Age Distribution

- If Survival and Fertility schedules stay constant, the proportion of individuals in the population at each age will stay constant (Stable Age Structure) even as the population as a whole increases.
- The proportion of the population within each age [c(x)] is the number in that age divided by the total population size.

•
$$c(x) = \frac{e^{-rx}l(x)}{\sum_{x=0}^{k} e^{-rx}l(x)}$$

Stable age distribution

		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]
	[1,]	200.00	320.00	752.00	1607.20	3505.92	7613.31	16549.12
	[2,]	0.00	160.00	256.00	601.60	1285.76	2804.74	6090.65
	[3,]	0.00	0.00	80.00	128.00	300.80	642.88	1402.37
	[4,]	0.00	0.00	0.00	20.00	32.00	75.20	160.72
	N	200.00	480.00	1088.00	2356.80	5124.48	11136.13	24202.86
		1.00	0.67	0.69	0.68	0.68	0.68	0.68
		0.00	0.33	0.24	0.26	0.25	0.25	0.25
x)		0.00	0.00	0.07	0.05	0.06	0.06	0.06
		0.00	0.00	0.00	0.01	0.01	0.01	0.01

$$n(\mathbf{0}) = \begin{bmatrix} 200\\0\\0\\0 \end{bmatrix} = 200$$

c(x)

		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]
	[1,]	50.00	167.50	334.25	740.80	1603.13	3487.39	7577.67
	[2,]	50.00	40.00	134.00	267.40	592.64	1282.50	2789.91
	[3,]	50.00	25.00	20.00	67.00	133.70	296.32	641.25
	[4,]	50.00	12.50	6.25	5.00	16.75	33.43	74.08
	N	200.00	245.00	494.50	1080.20	2346.22	5099.64	11082.91
		0.25	0.68	0.68	0.69	0.68	0.68	0.68
`		0.25	0.16	0.27	0.25	0.25	0.25	0.25
)		0.25	0.10	0.04	0.06	0.06	0.06	0.06
		0.25	0.05	0.01	0.00	0.01	0.01	0.01

$$n(\mathbf{0}) = \begin{bmatrix} 50\\50\\50\\50\\50 \end{bmatrix} = 200$$

c(x)

Finite Rate of Change

• Use population Change from n(t) to n(t+1) to calculate the finite rate of change (λ)

•
$$\lambda = \frac{n(t)}{n(t-1)}$$

• $n(0) = \begin{bmatrix} 200 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 200$ $\lambda = \frac{480}{200} = 2.4$
 $r = \ln \lambda = \ln 2.4 = 0.875$
• $n(1) = \begin{bmatrix} 320 \\ 160 \\ 0 \\ 0 \end{bmatrix} = 480$

Stable age distribution

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]
[1,]	200.00	320.00	752.00	1607.20	3505.92	7613.31	16549.12
[2,]	0.00	160.00	256.00	601.60	1285.76	2804.74	6090.65
[3,]	0.00	0.00	80.00	128.00	300.80	642.88	1402.37
[4,]	0.00	0.00	0.00	20.00	32.00	75.20	160.72
N	200.00	480.00	1088.00	2356.80	5124.48	11136.13	24202.86
lambda		2.40	2.27	2.17	2.17	2.17	2.17
r		0.88	0.82	0.77	0.78	0.78	0.78

$$n(\mathbf{0}) = \begin{bmatrix} 200\\0\\0\\0 \end{bmatrix} = 200$$

$$\lambda = \frac{n(t)}{n(t-1)} \qquad r = \ln \lambda$$

 $n(\mathbf{0}) = \begin{bmatrix} 50\\50\\50\\50\\50 \end{bmatrix} = 200$

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]
[1,]	50.00	167.50	334.25	740.80	1603.13	3487.39	7577.67
[2,]	50.00	40.00	134.00	267.40	592.64	1282.50	2789.91
[3,]	50.00	25.00	20.00	67.00	133.70	296.32	641.25
[4,]	50.00	12.50	6.25	5.00	16.75	33.43	74.08
N	200.00	245.00	494.50	1080.20	2346.22	5099.64	11082.91
lambda		1.23	2.02	2.18	2.17	2.17	2.17
r		0.20	0.70	0.78	0.78	0.78	0.78

Assumptions

- Assumptions associated with Exponential Growth...
- Closed population
- No genetic structure
- No time lags
- Within Age-structured Populations
- Assume *l(x)* and *b(x)* schedules are constant
 - no resource limitation

Cohort vs Static Life Tables

- Cohort Life Tables follow an entire cohort from birth to death to determine age-specific survivorship and fecundity schedules.
- Static Life Table cross section of the population at a given time interval. Used to calculate short-term mortality rates by comparing number of individuals within each consecutive age class.
- Also assumes population has reached a stable age structure

Changes in Age structure of populations over time

Changing age structure in Canadian Populations, and future projections

State structured matrix model

Life Stage, rather than Age, Models (Lefkovitch Matrices)

 Fecundity and survivorship may be based more on life stage than absolute age

	egg	tadpole	adult
egg	0	0	F_{a-e}
tadpole	P_{e-t}	P_{t-t}	0
adult	0		P_{a-a}

Stage structured growth: frog 1
A <- matrix(c(0,0,2.8,0.5,0.2,0,0,0.4,0.3), nrow=3, byrow=TRUE)
N0 <- matrix(c(80,50,10),ncol=1)</pre>

$$\begin{bmatrix} ,1 \end{bmatrix} \begin{bmatrix} ,2 \end{bmatrix} \begin{bmatrix} ,3 \end{bmatrix}$$

$$\begin{bmatrix} 1, 1 \end{bmatrix} \begin{bmatrix} 0.0 \\ 0.0 \end{bmatrix} \begin{bmatrix} 0.0 \\ 0.0 \end{bmatrix} \begin{bmatrix} 2.8 \\ 0.5 \end{bmatrix} \begin{bmatrix} 2.7 \\ 0.5 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.0 \\ 0.4 \end{bmatrix} \begin{bmatrix} 3.7 \end{bmatrix} \begin{bmatrix} 0.0 \\ 0.4 \end{bmatrix} \begin{bmatrix} 0.3 \end{bmatrix}$$

```
# Stage structured growth: frog 1
A <- matrix(c(0,0,2.8,0.5,0.2,0,0,0.4,0.3), nrow=3, byrow=TRUE)
N0 <- matrix(c(80,50,10),ncol=1)</pre>
```

```
years <- 30
N.projections1 <- matrix(0,nrow=nrow(A),ncol = years +1)
N.projections1[,1]<- N0</pre>
```

```
for(year in 1:years){
    N.projections1[,year+1]<- A %*% N.projections1[,year]
}</pre>
```


Dynamic link between stage classes

```
# Stage structured growth: frog 1
A <- matrix(c(0,0,2.8,0.5,0.2,0,0,0.4,0.3), nrow=3, byrow=TRUE)
N0 <- matrix(c(80,50,10),ncol=1)</pre>
```

```
years <- 30
N.projections1 <- matrix(0,nrow=nrow(A),ncol = years +1)
N.projections1[,1]<- N0</pre>
```

```
for(year in 1:years){
    N.projections1[,year+1]<- A %*% N.projections1[,year]
}</pre>
```


A <- matrix(c(0,0,2.5,0.5,0.2,0,0,0.4,0.3), nrow=3, byrow=TRUE)
N0 <- matrix(c(80,50,45),ncol=1)</pre>

```
years <- 30
N.projections1 <- matrix(0,nrow=nrow(A),ncol = years +1)
N.projections1[,1]<- N0</pre>
```

```
for(year in 1:years){
```

}

```
N.projections1[,year+1]<- A %*% N.projections1[,year]</pre>
```

```
120
                                                                                                                           egg
                                                                                                                           tadpole
       80
                                                                                                                          adult
Abundance by age class
       60
       40
      20
                                   5
                                                     10
                                                                       15
                                                                                          20
                                                                                                            25
                 0
                                                                                                                               30
```

Life history complexity

	(0	0	0	0	0	322.38
	0.966	0	0	0	0	0
\ _	0.013	0.010	0.125	0	0	3.448
4 =	0.007	0	0.125	0.238	0	30.170
	0.001	0	0.036	0.245	0.167	0.862
	0	0	0	0.023	0.750	0/

wild teasel

H Caswell.

Matrix Population Models: Construction, Analysis, and Interpretation. Sinauer Associates, Sunderland, MA, 2nd edition, 2001.

Population sampling

$$N_t = N_0 e^{rt}$$
$$dN \qquad N_{t-\tau}$$

$$\frac{dN}{dt} = rN\left(1 - \frac{Nt - \tau}{K}\right)$$
$$N_t = \frac{K}{1 + \left[(K - N_0)/N_0\right]e^{-rt}}$$
$$n(t+1) = A n(t)$$

1

Population sampling

Estimating N

N is always estimated (sampled)

- Distribution not a point estimate
 - Measure of central tendency (mean)
 - Measure of variation (standard deviation)

- Accuracy
 - The distance of the measured value from the "true" value
- Precisions
 - The degree of aggregation of the measured values
 - Confidence intervals
- Bias
 - A consistent directional disparity between the measured value and the true value.

Normal vs. Poisson

Number Density

- Random sampling
- Stratified random sampling
- Stratified sampling
- Systematic sampling
- Objective: high accuracy, least bias, greatest precision, lowest cost

Number Density

- Random sampling
 - Minimizes the amount our estimate of N is confounded by unknown or unmeasured variables
 - Minimize bias (unknown, accessibility, judgement)
 - Unknown (unknowable) environmental heterogeneity

- Stratified random sampling
 - Assumed underlying ecological structure (grouping, subpopulations)
 - Aggregate sampling by strata
 - Random sampling within strata
 - Unknown structure within strata

Number Density

Population density sampling

- Quadrat counts
- Line transects
- Distance metrics

Quadrat counts

- Count plants/ animals in a known area
 - Simplest technique fore density estimation
 - Counts can be taken from units using any number of sample designs: random, stratified random, systematic..
 - Assumptions
 - All individuals in the quadrate are observed
 - Quadrat samples are representative of the study area as a whole
 - Individuals don't move between quadrats during a sampling session

Quadrat counts

- Statistical extrapolation
 - Relate distribution of counts to a statistical distribution
 - Use count distribution not a continuous distribution
 - Devise a statistical model that estimates population size

Line transects

Used to calculate density of animals in rectangular "quadrats"

Line transects

- Used to calculate density of animals in rectangular "quadrats"
 - If detectability 100% simple count
 - If detectability <100% then develop detection function to estimate density

$$\widehat{D} = \frac{n}{2La}$$

- \widehat{D} = density of animals per unit area
- n = number of animals seen on transect
- L = length of transect
- a = detection constant (detection probability vs distance)

Distance methods

- Distance to individual from random point
- Distance to nearest neighbor

$$\widehat{N_2} = \frac{N}{\pi \sum (r_i^2)} = trees/m^2$$