
BIOL 410 Population and 
Community Ecology 

Age structured populations 

Sampling population density 



Predicting Age Structure 

𝒏𝟏 𝒕 + 𝟏 = 𝑭𝟏𝒏𝟏 𝒕 + 𝑭𝟐𝒏𝟐 𝒕 + 𝑭𝟑𝒏𝟑 𝒕 + 𝑭𝟒𝒏𝟒 𝒕  
𝒏𝟐(𝒕 + 𝟏) = 𝑷𝟏𝒏𝟏(𝒕) 
𝒏𝟑(𝒕 + 𝟏) = 𝑷𝟐𝒏𝟐(𝒕) 
𝒏𝟒(𝒕 + 𝟏) = 𝑷𝟑𝒏𝟑(𝒕) 
 

x i S(x) l(x) g(x) b(x) Pi Fi l(x) b(x) l(x) b(x) x 𝒆−𝒓𝒙𝒍 𝒙 𝒃(𝒙) 

0 500 1.0 0.8 0 0.0 0.0 0.0 

1 1 400 0.8 0.5 2 0.80 1.60 1.6 1.6 0.736 

2 2 200 0.4 0.25 3 0.50 1.50 1.2 2.4 0.254 

3 3 50 0.1 0 1 0.25 0.25 0.1 0.3 0.010 

4 4 0 0 0 0 0 0.0 0.0 0.0 

Σ = 2.9 Σ = 4.3 Σ = 1.0 



Leslie Matrix  
Representing Growth in matrix of k x k age classes 
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Leslie Matrix 

x i l(x) b(x) Pi Fi 

0 1.0 0 

1 1 0.8 2 0.80 1.60 

2 2 0.4 3 0.50 1.50 

3 3 0.1 1 0.25 0.25 

4 4 0 0 0 0 
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Leslie Matrix 

• Forecasting  future age structure (n at time t+1) based current 
population structure (n at time t) using Fertility and Survival 
Probability from the Leslie Matrix. 

𝑛 𝑡 + 1 = 𝐴 𝑛 𝑡  

𝑛 𝑡 + 1 =

𝑭𝟏
𝑷𝟏
0

𝑭𝟐
0
𝑷𝟐

0 0

   

𝑭𝟑 𝑭𝟒
0
0
𝑷𝟑

0
0
0

 𝒙 

𝑛1
𝑛2
𝑛3
𝑛4

 



Matrix algebra 

• Product of a square matrix and a column 
matrix (vector) is a column matrix 

• Useful for solving linear equations 

 



Examples of Using Leslie Matrix 
• Start with a cohort of 200 individuals in age-class 1 with the 

Fertility and Survival probabilities in our example: 

n1 

P2=0.5 

n3 n4 

1 2 3 4 Age Classi 
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Examples of Using Leslie Matrix 

 

𝑛 𝑡 + 1 =

𝑭𝟏
𝑷𝟏
0

𝑭𝟐
0
𝑷𝟐

0 0

   

𝑭𝟑 𝑭𝟒
0
0
𝑷𝟑

0
0
0

 𝒙 

𝑛1
𝑛2
𝑛3
𝑛4

=

1.6
0.8
0

1.5
0
0.5

0 0

   

0.25 0
0
0
0.25

0
0
0

 𝒙 

200
0
0
0

 

 
 

𝑛 𝑡 + 1 =

1.6 200 +
0.8 200 +
0 200 +

1.5 0 +
0 0 +
0.5 0 +

0 200 + 0 0 +

   

0.25 0 + 0(0)

0 0 +
0 0 +
0.25 0 +

0(0)
0(0)
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𝑛 𝑡 + 1 =

320
160
0
0

 

 
 



Leslie Matrix 
# Age structured growth - one time step 
A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE) 
 
 
 
 
 
 
 
N0 <- matrix(c(200,0,0,0),ncol=1) 
 
 
 
 
 
 
N1 <- A %*% N0 

     [,1] [,2] [,3] [,4] 
[1,]  1.6  1.5 0.25    0 
[2,]  0.8  0.0 0.00    0 
[3,]  0.0  0.5 0.00    0 
[4,]  0.0  0.0 0.25    0 

     [,1] 
[1,]  200 
[2,]    0 
[3,]    0 
[4,]    0 

     [,1] 
[1,]  320 
[2,]  160 
[3,]    0 
[4,]    0 



Leslie Matrix 
A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE) 
N0 <- matrix(c(200,0,0,0),ncol=1) 
 
years <- 6 
N.projections <- matrix(0,nrow=nrow(A),ncol = years +1) 
N.projections[,1]<- N0 
 
for(year in 1:years){ 
    N.projections[,year+1]<- A %*% N.projections[,year] 
} 

[,1] [,2] [,3] [,4] [,5] [,6] [,7] 

[1,] 200 320 752 1607.2 3505.92 7613.312 16549.12 

[2,] 0 160 256 601.6 1285.76 2804.736 6090.65 
[3,] 0 0 80 128 300.8 642.88 1402.368 

[4,] 0 0 0 20 32 75.2 160.72 

Year 

Age class 



Leslie Matrix 
A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE) 
N0 <- matrix(c(200,0,0,0),ncol=1) 
 
years <- 6 
N.projections <- matrix(0,nrow=nrow(A),ncol = years +1) 
N.projections[,1]<- N0 
 
for(year in 1:years){ 
    N.projections[,year+1]<- A %*% N.projections[,year] 
} 



Leslie Matrix (different starting structure) 

A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE) 
N0 <- matrix(c(50,50,50,50),ncol=1) 
 
years <- 6 
N.projections1 <- matrix(0,nrow=nrow(A),ncol = years +1) 
N.projections1[,1]<- N0 
 
for(year in 1:years){ 
    N.projections1[,year+1]<- A %*% N.projections1[,year] 
} 



Age distribution 

• Dynamics initially strongly influenced by starting population age 
distribution 

• However, populations quickly approach a stable and stationary age 
distribution  

𝑛 𝟎 =

50
50
50
50

 = 200 𝑛 𝟎 =

200
0
0
0

 = 200 



Stable Age Distribution 

• If Survival and Fertility schedules stay constant, the proportion 
of individuals in the population at each age will stay constant 
(Stable Age Structure) even as the population as a whole 
increases. 

• The proportion of the population within each age [c(x)] is the number in 
that age divided by the total population size. 

 

• 𝑐 𝑥 =  
𝑒−𝑟𝑥𝑙(𝑥)

 𝑒−𝑟𝑥𝑙(𝑥)𝑘
𝑥=0

 

 

 



Stable age distribution 

𝑛 𝟎 =

50
50
50
50

 = 200 

𝑛 𝟎 =

200
0
0
0

 = 200 

[,1] [,2] [,3] [,4] [,5] [,6] [,7] 

[1,] 200.00 320.00 752.00 1607.20 3505.92 7613.31 16549.12 
[2,] 0.00 160.00 256.00 601.60 1285.76 2804.74 6090.65 
[3,] 0.00 0.00 80.00 128.00 300.80 642.88 1402.37 

[4,] 0.00 0.00 0.00 20.00 32.00 75.20 160.72 
N 200.00 480.00 1088.00 2356.80 5124.48 11136.13 24202.86 

1.00 0.67 0.69 0.68 0.68 0.68 0.68 
0.00 0.33 0.24 0.26 0.25 0.25 0.25 

0.00 0.00 0.07 0.05 0.06 0.06 0.06 
0.00 0.00 0.00 0.01 0.01 0.01 0.01 

[,1] [,2] [,3] [,4] [,5] [,6] [,7] 

[1,] 50.00 167.50 334.25 740.80 1603.13 3487.39 7577.67 
[2,] 50.00 40.00 134.00 267.40 592.64 1282.50 2789.91 
[3,] 50.00 25.00 20.00 67.00 133.70 296.32 641.25 

[4,] 50.00 12.50 6.25 5.00 16.75 33.43 74.08 
N 200.00 245.00 494.50 1080.20 2346.22 5099.64 11082.91 

0.25 0.68 0.68 0.69 0.68 0.68 0.68 
0.25 0.16 0.27 0.25 0.25 0.25 0.25 

0.25 0.10 0.04 0.06 0.06 0.06 0.06 
0.25 0.05 0.01 0.00 0.01 0.01 0.01 

c(x) 

c(x) 



Finite Rate of Change 

• Use population Change from n(t) to n(t+1) to 
calculate the finite rate of change (λ)  

• λ=
n(t)
n(t−1)

 

• 𝑛 𝟎 =

200
0
0
0

 = 200 

• 𝑛 𝟏 =

320
160
0
0

 = 480 

 

 

λ=
480

200
= 2.4 

r = ln λ= 𝑙𝑛2.4 = 0.875 



Stable age distribution 

𝑛 𝟎 =

50
50
50
50

 = 200 

𝑛 𝟎 =

200
0
0
0

 = 200 

[,1] [,2] [,3] [,4] [,5] [,6] [,7] 
[1,] 200.00 320.00 752.00 1607.20 3505.92 7613.31 16549.12 
[2,] 0.00 160.00 256.00 601.60 1285.76 2804.74 6090.65 

[3,] 0.00 0.00 80.00 128.00 300.80 642.88 1402.37 
[4,] 0.00 0.00 0.00 20.00 32.00 75.20 160.72 

N 200.00 480.00 1088.00 2356.80 5124.48 11136.13 24202.86 
lambda 2.40 2.27 2.17 2.17 2.17 2.17 
r 0.88 0.82 0.77 0.78 0.78 0.78 

[,1] [,2] [,3] [,4] [,5] [,6] [,7] 

[1,] 50.00 167.50 334.25 740.80 1603.13 3487.39 7577.67 
[2,] 50.00 40.00 134.00 267.40 592.64 1282.50 2789.91 

[3,] 50.00 25.00 20.00 67.00 133.70 296.32 641.25 
[4,] 50.00 12.50 6.25 5.00 16.75 33.43 74.08 
N 200.00 245.00 494.50 1080.20 2346.22 5099.64 11082.91 

lambda 1.23 2.02 2.18 2.17 2.17 2.17 
r 0.20 0.70 0.78 0.78 0.78 0.78 

λ=
n(t)

n(t−1)
 r = ln λ 



Assumptions 

• Assumptions associated with Exponential Growth… 

• Closed population 

• No genetic structure 

• No time lags 

 

• Within Age-structured Populations 

• Assume l(x) and b(x) schedules are constant  
• no resource limitation 



Cohort vs Static Life Tables 

• Cohort Life Tables – follow an entire cohort from birth 

to death to determine age-specific survivorship and fecundity 
schedules. 

 

• Static Life Table – cross section of the population at a 

given time interval.  Used to calculate short-term mortality 
rates by comparing number of individuals within each 
consecutive age class. 

• Also assumes population has reached a stable age structure 



Changes in Age structure of 
populations over time 

Changing age structure in Canadian Populations, and future projections 



State structured matrix model 

Life Stage, rather than Age, 
Models (Lefkovitch Matrices) 
• Fecundity and survivorship may be 

based more on life stage than 
absolute age 

                 egg    tadpole   adult 
𝒆𝒈𝒈

𝒕𝒂𝒅𝒑𝒐𝒍𝒆
𝒂𝒅𝒖𝒍𝒕

𝟎 𝟎 𝑭𝒂−𝒆
𝑷𝒆−𝒕 𝑷𝒕−𝒕 𝟎
𝟎 𝑷𝒕−𝒂 𝑷𝒂−𝒂

 

negg nadult 

Egg Tadpole Adult 
Life Stage 

Fadult to egg 

Pegg-tadpole 

ntadpole 

Ptadpole to adult 

Ptadpole to 

tadpole Padult to 

adult 



Stage structured model 

negg nadult 

Egg Tadpole Adult 
Life Stage 

Fadult to egg 

Pegg-tadpole 

ntadpole 

Ptadpole to adult 

Ptadpole to 

tadpole Padult to 

adult 

# Stage structured growth: frog 1 
A <- matrix(c(0,0,2.8,0.5,0.2,0,0,0.4,0.3), nrow=3, byrow=TRUE) 
N0 <- matrix(c(80,50,10),ncol=1) 

     [,1] [,2] [,3] 
[1,]  0.0  0.0  2.8 
[2,]  0.5  0.2  0.0 
[3,]  0.0  0.4  0.3 

A = 



Stage structured model 
# Stage structured growth: frog 1 
A <- matrix(c(0,0,2.8,0.5,0.2,0,0,0.4,0.3), nrow=3, byrow=TRUE) 
N0 <- matrix(c(80,50,10),ncol=1) 
 
years <- 30 
N.projections1 <- matrix(0,nrow=nrow(A),ncol = years +1) 
N.projections1[,1]<- N0 
 
for(year in 1:years){ 
     N.projections1[,year+1]<- A %*% N.projections1[,year] 
} 

Dynamic link between stage classes 



Stage structured model 
# Stage structured growth: frog 1 
A <- matrix(c(0,0,2.8,0.5,0.2,0,0,0.4,0.3), nrow=3, byrow=TRUE) 
N0 <- matrix(c(80,50,10),ncol=1) 
 
years <- 30 
N.projections1 <- matrix(0,nrow=nrow(A),ncol = years +1) 
N.projections1[,1]<- N0 
 
for(year in 1:years){ 
     N.projections1[,year+1]<- A %*% N.projections1[,year] 
} 

What does this suggest about r? 
What does this suggest about perturbation at t = 0?  



Stage structured model 
A <- matrix(c(0,0,2.5,0.5,0.2,0,0,0.4,0.3), nrow=3, byrow=TRUE) 
N0 <- matrix(c(80,50,45),ncol=1) 
 
years <- 30 
N.projections1 <- matrix(0,nrow=nrow(A),ncol = years +1) 
N.projections1[,1]<- N0 
 
for(year in 1:years){ 
  N.projections1[,year+1]<- A %*% N.projections1[,year] 
} 



Life history complexity 

H Caswell.  
Matrix Population Models: Construction, Analysis, and Interpretation.  
Sinauer Associates, Sunderland, MA, 2nd edition, 2001.  

wild teasel 

A = 



Population sampling 

𝑛 𝑡 + 1 = 𝐴 𝑛 𝑡  

𝑁𝑡 =
𝐾

1 + 𝐾 − 𝑁0 /𝑁0 𝑒
−𝑟𝑡

 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁𝑡−𝜏
𝐾

 

𝑁𝑡 = 𝑁0𝑒
𝑟𝑡 



Population sampling 

Estimating N 



N is always estimated (sampled) 
• Distribution not a point estimate 

– Measure of central tendency (mean) 
– Measure of variation (standard deviation) 

 
 

• Accuracy 
– The distance of the measured value from the “true” 

value 

• Precisions 
– The degree of aggregation of the measured values 
– Confidence intervals 

• Bias 
– A consistent directional disparity between the 

measured value and the true value. 



Normal vs. Poisson 

# Poisson distribution 
x <- c(0:12) 
lamda <- 8 # 0.1, 0.5, 1,2,3,8 
p <- dpois(x,lamda) 
barplot(p,axes = TRUE,  
        names.arg = x, 
        ylim=c(0,max(p)+0.1), 
        ylab = "P(X)" 
        ) 
mtext(paste("lamda = ",lamda),side=3, 
       outer=FALSE,line=-3,cex=1.5) 



Population sampling strategies 

Number 
Density 

• Random sampling 
• Stratified random sampling 
• Stratified sampling 
• Systematic sampling 

 
• Objective: high accuracy, least bias, greatest 

precision, lowest cost 



Population sampling strategies 

Number 
Density 

• Random sampling 
• Minimizes the amount our estimate of N is confounded by 

unknown or unmeasured variables 
• Minimize bias (unknown, accessibility, judgement) 
• Unknown (unknowable) environmental heterogeneity 



Population sampling strategies 

Number 
Density 

• Stratified random sampling 
• Assumed underlying ecological structure (grouping, subpopulations) 
• Aggregate sampling by strata 
• Random sampling within strata 

• Unknown structure within strata 



Population sampling strategies 

Number 
Density 

• Stratified sampling 
• Assumed underlying ecological structure (grouping) 
• Aggregate sampling by strata 
• Systematic sampling within strata 

G
ra

d
ie

n
t 



Population sampling strategies 

Number 
Density 

• Systematic sampling 
• Known or unknown ecological structure 



Do you require high 
precision N estimates 

Will you collect data for 
individuals? 

Do you require high 
precision N estimates 

Are organisms mobile? 

Quadrat counts 

Line transects 

Spatial distribution / 
distance methods 

Indices for relative 
density 

Mark-recapture 
techniques 

Is the population being 
exploited 

Is density low? 

Is the population 
dispersion random 

Catch per unit effort 
methods 

Quadrat counts 

Yes 

No 

No 

No 

No 

Yes 

Yes 

Yes Yes 

Yes 

Yes No 



Population density sampling 

• Quadrat counts 

• Line transects 

• Distance metrics 



Quadrat counts 

• Count plants/ animals in a known 
area 
– Simplest technique fore density 

estimation 
– Counts can be taken from units 

using any number of sample 
designs: random, stratified 
random, systematic.. 
 

– Assumptions 
• All individuals in the quadrate are 

observed 
• Quadrat samples are representative 

of the study area as a whole 
• Individuals don’t move between 

quadrats during a sampling session 



Quadrat counts 
• Statistical extrapolation 

– Relate distribution of counts to a statistical distribution 

– Use count distribution not a continuous distribution 

– Devise a statistical model that estimates population size 



Line transects 

• Used to calculate density of animals in 
rectangular “quadrats” 



Line transects 
• Used to calculate density of animals in 

rectangular “quadrats” 
– If detectability 100% simple count 

– If detectability <100% then develop detection 
function to estimate density 

𝐷 =
𝑛

2𝐿𝑎
 

𝐷  = density of animals per unit area 
n = number of animals seen on transect 
L = length of transect 
a = detection constant (detection probability vs distance) 



Distance methods 

• Distance to individual from random point 

• Distance to nearest neighbor 

𝑁2 =
𝑁

𝜋 𝑟𝑖
2
= 𝑡𝑟𝑒𝑒𝑠/𝑚2 


