BIOL 410 Population and
Community Ecology

Age structured populations



Variation in Carrying Capacity

* Environmental Variation may cause carrying
capacity to change over time

e Variation could be:
1. Random
2. Cyclic



Variation in Carrying Capacity

 Random Variation in Carrying Capacity (K)

 Ifris not variable, but carrying capacity changes over time,
result is complex growth patterns

 When a population is above the carrying capacity, it
declines at a faster rate than it will increase if it is at a
corresponding similar point below the carrying capacity.

* If the carrying capacity is described by a mean (K) with an
associated variance (af(), a rough approximation of the
mean population size will be:

. N=Fk_C%
2



Variation in Carrying Capacity

 Random Variation in Carrying Capacity (K)
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e if the small intrinsic rate of increase (r) is small, the population do not
fluctuate much in size as carrying capacity varies, but the population size
(N) will tend to be overall somewhat smaller than a population that has
a rapid intrinsic growth rate.



Variation in Carrying Capacity

* Periodic (cyclic) variation in Carrying Capacity
* e.g. seasonal variation in resources

* K; = kg + kqcos (%)

* K; = carrying capacity at time t
* ky =is mean carrying capacity
* k, =the amplitude of the cycle
e ¢ =the length of the cycle



Variation in Carrying Capacity

* Periodic (cyclic) variation in Carrying Capacity

* length of the cycle acts as a time lag, so the behavior of the
model depends on the factor rc (as it did previously with rt)



Variation in Carrying Capacity

if rc is large (>>1.0), then the
population tends to track the
fluctuations in the environment:

N. ~ ko + kycos(=)

If rc is very small (<<1.0), then the
population tends to average out
the fluctuations and persist at a
level slightly below carrying
capacity
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Age/stage structure populations




Objectives

* Representing age structured populations
— Cohort life tables
— Static life tables
*R,1,G
— Matrix population models

e Leslie Matrix
e Lefkovich Matrix

— Individual-based population models



Age-structured Populations

Nt+1:Nt+b'Nt_m'Nt

Nt — Noert

Exponential models assume no age-structure in
populations

For many organisms, this may be an unrealistic
assumption

 Delays in contribution to population birth rates

* Differences in death rates during different phases of
an organism’s life history



Age/stage life history diagram
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Adult survival and population growth rate in Colorado big brown bats
(Eptesicus fuscus)

Tromas J. O'SuEA,* LAUrRA E. ELLISON, AND THOMAS R. STANLEY



Age-structured populations

e Define by Age Class (i)

* Individuals within age class (i) are between the age of
i-1 and .

 Age classes run from 1-k.

 Age structure: define fecundity and mortality rates for
age classes based on time spans of significance to the
life history of the species

* Simplification of continuous processes (death)

Age Class;

(A DA DA o



Stage structured populations
Fy—/ / k_.Sa
Fa

* Stage Structure: define fecundity and survivorship
rates for age groups based on time spans of
significance to the life history of the species

* Further simplification of continuous demographic
changes and age structure




Age/stage dependent processes

* Survivorship

* Fecundity



Age and survival
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Age-specific variation in (year-
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female and (b) male song sparrows on
Mandarte Island




Survivorship /(x)

 Survivorship Schedule /(x)

* Cohort —group of individuals born at the same time and
followed to death.

Segment

Based on Skellam 1972



Survivorship /(x)

e Survivorship Schedule /(x)

e Cohort —group of individuals born at the
same time and followed to death.

* Cohort Survival - S(x) — number of the
original cohort still alive at start of age

X

S(x) 1(x)

(x) 0 500 1.0

* Survivorship Schedule —I(x) — proportion |1 400 0.8
th iginal cohort that ' t

(O){) e original cohort that survives to age 5 500 0.4

C () = S() 3 50 0.1

s(0) 4 0 0




Survival Probability g(x)

* To compare the survival of different ages directly, we must
determine the probability of survival [g(x)] from age (x) to
age (x+1), given that an individual has already survived to age
X.

S(x)  1(x)  9(x)

500 1.0 0.8

[(x+1)
- g(x) = ;@

400 0.8 0.5

200 04 0.25
50 0.1 0
0 0

A W IN = O




Natural Survivorship
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Journal of Animal
Ecology 1993,
62, 323-333

Age and clutch size (Fecundity)

Age and reproductive success in female lesser snow
geese: experience, senescence and the cost of philopatry

R.F. ROCKWELL*, E.G. COOCH', C.B. THOMPSON*"# and

F. COOKE?®

*Department of Ornithology, American Museum of Natural Hisiory, New York, NY 10024-5192, USA;

' Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA; *Department of
Biology, The City College of CUNY, New York, NY 10031, USA; and *Department of Biology, Queen’s
University, Kingston, Ontario K7L 3N6 Canada

50

93 a
451 86 4048 { 72 45

5360E63EE {}{I

4.0} E

9
5 [ ®
6

Total clutch laid
@
(8]
B

30y

25+

20—
Age

Fig. 2. The distribution of clutch size with respect to age
for lesser snow geese at La Pérouse Bay. Least square
means and associated standard errors were estimated from
an ANova model including age and year. The values are
those expected under a balanced design with covariate
(year) effects removed (SAS Institute 1990). Age-classes
9 and above include both known and minimum age indivi-
duals. Age-class 15 is a composite of individuals 15 and
older. Sample sizes are indicated.



Fecundity b(x)

* Fecundity Schedules

Average number of female offspring born per unit
time to an individual female of a particular age.

 Represented by age as S(x) I(x) b(x)

births, b(x), or maternity, 0 500 1.0 0
m(x)

* Ifindividuals do not 1 400 0.8 2
reproduce within particular |2 200 0.4 3
age categories, their
fecundity schedule for that 3 >0 0.1 1
age is zero. 4 0 0 0

Types of Fecundity Schedules:
Semelparous/monocarpic — reproduce only once in lifetime
lteroparous/ polycarpic — reproduce multiple times through lifetime




Life Tables
What is a life table?

— “a table of age-specific survival and fecundity
rates for a population”

— A “bookkeeping” device used by ecologists and
actuaries to track population numbers and vital
rates across age

— Often focused on tracking survival, but is useful
for understanding population change

— Life table analysis

* Allows us to calculate key rates and population
properties
— Net reproductive rate per individual R,
— Generation Time (G)
— Instantaneous growth rate (r)



Net Reproductive Rate R,

* Net Reproductive Rate (R,) —

Kk
the mean number of female RO — z l(x)b(x)
offspring produced per female 4

xX=

over her lifetime.

X S(x)  1(x) g(x) b(x)  1(x) b(x)
0 500 1.0 0.8 0 0.0

1 400 0.8 0.5 2 1.6

2 200 0.4 0.25 3 1.2

3 50 0.1 0 1 0.1

4 0




Generation Time (G)

* R, measures the increase in the population as
a function of generation time.

 To derive the intrinsic rate of increase in the
population (r), we need to scale R, to
Generation Time (G)



Generation Time (G)

* Generation Time (G) - the average age of the
parents of all offspring produced by a single

cohort - Z’;=o 1(x) b(x) x
’,}':0 [(x) b(x)

G is typically greater than 1.0 for most populations.



Generation Time (G)

X S(x)  Ix)  g(x)  b(x) 1(x) b(x) 1(x)b(x) X
0 500 10 08 0 0.0 0.0
1 400 08 05 2 1.6 1.6
2 2000 04 025 3 1.2 2.4
3 50 0.1 0 1 0.1 0.3
4 0 0 0 0.0 0.0

2=2.9 >=43

_ SRl b@)x _ 43 _
G= yk_1x)b(x) ~ 29 1.483 years

What would happen if species didn’t reproduce until 2?



Approximating r

* Use the relationship between generation time and Net
reproductive rate to get an approximate value of r

In(Ry) ~ TG

">
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Euler Equation

This method is only an approximation of r

Euler Equation (“oiler”) used to derive exact
values from lifetables:

1= Yk g™ 1(x)b(x)

Start with the estimate of r
calculate out the ¥:X_, e ™ [(x)b(x) from the tables
See if itsums to 1.0

If it is too high, plug in a larger value for r (as we are using a
negative exponential).

If too small, put in a smaller value.



Euler Equation

X I(xX) g(xX) b(x) I(X)b(x) I(x)b(X)x e ™ I(x)b(x)
0 500 1.0 0.8 0 0.0 0.0 0.0

1 400 0.8 0.5 2 1.6 1.6 0.78

2 200 0.4 0.25 3 1.2 2.4 0.285

3 50 0.1 0 1 0.1 0.3 0.012

4 0 0 0 0.0 0.0 0.0

2=2.9 > =43 > =1.077

In(Ry) In(2.9)
r= ~

¢ ~1ag3 ~ 0718




Euler Equation

tryr =~ 0.75

X I(X) g(x) bXx) I(X)b(x) I(x)b(x)x e ™I(x)b(x)
0 500 1.0 0.8 0 0.0 0.0 0.0

1 400 0.8 0.5 2 1.6 1.6 0.756

2 200 0.4 0.25 3 1.2 2.4 0.268

3 50 0.1 0 1 0.1 0.3 0.0105

4 0 0 0 0.0 0.0 0.0

still too high ....

2=29

>=473

2 =1.035



Euler Equation

trial and error —r =0.776

X I(X) g(x) bXx) I(X)b(x) I(x)b(x)x e ™I(x)b(x)
0 500 1.0 0.8 0 0.0 0.0 0.0

1 400 0.8 0.5 2 1.6 1.6 0.736

2 200 0.4 0.25 3 1.2 2.4 0.254

3 50 0.1 0 1 0.1 0.3 0.010

4 0 0 0 0.0 0.0 0.0

2=29 >=43 >=1.0

Nt = Noert Can project future population size!



Distribution within Age-classes

* |n addition to forecasting future population sizes, we
can determine the distribution of those individuals

within each age class (i)

* Use age class notation
— Number of individuals in time (t) in age class i is n(t).

— This can be expressed as a vector:
/ nq (t)\
n,(t)

ns(t)
\ni(t)/

n(t) =




Distribution within Age-classes
* Relating this back to the life table

ny (¢) 500

. _ [ m2() | _ [ 400

n® =10 | = 200

N4 (t) 50

R I(X) g(x) b(x) I(X)b(x) I(X)b(x)x e ™I(x)b(x)

: 0O 500 1.0 0.8 0 0.0 0.0 0.0
; 1 400 0.8 0.5 2 1.6 1.6 0.736
3 2 200 04 025 3 1.2 2.4 0.254
A 3 50 0.1 0 1 0.1 0.3 0.010
4 0 0 0 0.0 0.0 0.0

X=29 X2=43 x=10




Predicting Future Age Structure

* To predict the age structure of a population from
one time period n(t) to the next n(t+1), we need
to determine two factors:

* Survival Probability for each age class (P;)

 Chance that an individual in age class i survives to
age class i+1

* Fertility of each age class (F;)

* Average number of offspring produced by an
individual in age class i



Predicting Future Age Structure

* To calculate P;and F;, some assumptions need

to be made about when individuals reproduce
and die!

* Birth-pulse model

* Individuals give birth to all offspring on the day
they enter a new age class

* Population is censuses immediately after
breeding (postbreeding census)



Survival Probability (P;) for age classes

* Survival Probability (P;) - the probability that an individual
in age class i survives to age class i+1.

* number of individuals n;,1 that will be in the next time
step (£ + 1) is a function of the number of individuals n; in
the previous time step (t) and the survival probability for
that time step P;

ng1(E+1) = Pin(t)

e This works for all age classes except i=1. Individuals in the
first age class depend on the fertility of individuals in all the
age classes



e Calculating Survival Probability

Predicting Future Age Structure

P;

1(D)

" li-1)

X I(X) g(x) b(x) P; I(x) b(x) I(X) b(x) X e ™ 1(x)b(x)
0 500 1.0 0.8 0 0.0 0.0 0.0

1 1 400 0.8 0.5 2 0.80 1.6 1.6 0.736

2 2 200 04 0.25 3 0.50 1.2 2.4 0.254

3 3 50 01 O 1 0.25 0.1 0.3 0.010

4 4 0 0 0 0 0.0 0.0 0.0




Fertility (F;) for age classes

* Fertility (F;) -average number of offspring produced per
female in age class i, adjusted by the survival
probability for that age class

F; = b(i)P;

 The number of individuals in age class 1 at time t+1 is
the sum of the fertility of all age classes in the previous

time.

k
i=1



Predicting Future Age Structure

* Calculating Fertility F; = b(i)P;
X I(X) g(X) b(x) P; - I(X) b(X) I(X) b(X) x e ™I(x)b(x)
0 500 1.0 0.8 0 0.0 0.0 0.0
1 1 400 0.8 0.5 2 0.80 1.60 1.6 1.6 0.736
2 2 200 04 025 3 0.50 1.50 1.2 2.4 0.254
3 3 50 0.1 0 1 0.25 0.25 0.1 0.3 0.010
4 4 0 0 0 0 0 0.0 0.0 0.0




Predicting Future Age Structure

Age Class;

ny(t+1) = Fin,(t) + Fany(t) + Fans(t) + Fany(t)
ny(t+1) = Pyn4(t)
nz(t+1) = Pyn,(t)
ny(t+1) = P3nz(t)



Predicting Future Age Structure

Age Class;

ny(t+1) = Fin,(t) + Fany(t) + Fans(t) + Fany(t)
ny(t+1) = Pin.(t)
nz(t+ 1) = Pyn,(t)
ng(t+ 1) = P3ni(t)

What else would be needed if this is stage instead of age based?



Predicting Age Structure

ny(t+1) = Finy(t) + Fan,(t) + Fanz(t) + Fany(t)
ny(t+1) = Pyn.(t)
n3(t+ 1) = Pyn,(t)
ny(t+ 1) = P3n3(t)

e Cumbersome with life-table data

e Use matrix formulation
— Leslie matrix (age structured population)
— Lefkovich matrix (stage structured population)



Leslie Matrix

Representing Growth in matrix of k X k age classes

F

4
P3 Age CIaSSi

Columns: age class at time t

\

Rlows: age _ P1 0 0 0 ‘\
class at — A=
timet+1 O Pz O

Fertility rates

Survival probability



Leslie Matrix

-Fl FZ F3 F4--

x i Ix) bx) P F,
0 1.0 © A= P1 09 0
0o P, 0 O
1 1 08 2 080 1.60 0 0 P; 0.
2 2 04 3 050 1.50
3 3 01 1 025 0.25
4 4 0 0 0 0 1.6 1.5 0.25
B 2 0580 o O
0 050 O
0 0 0.25

o O OOI




Leslie Matrix

* Forecasting future age structure (n at time t+1) based current
population structure (n at time t) using Fertility and Survival
Probability from the Leslie Matrix.

n(t+1) = An(t)

_Fl FZ F3 F4-- n,
P4 0 O 0 n,
0 Pz 0 0 ns;
0 0 P; 0] Ny

nt+1) =




Examples of Using Leslie Matrix

e Start with a cohort of 200 individuals in age-class 1 with the
Fertility and Survival probabilities in our example:

Age Class;

F, F, F3 F4 ny (1.6 1.5 0.25 0] 200

_|py 0 0 0 ny{_fog o 0 O 0
nt+1) = o P, 0 0 x<n3>— 0 05 0 0 x| 5
0 0 P3 0 M4 |0 0 025 0 0




Examples of Using Leslie Matrix

F, F, F3 F,4 ny (1.6 1.5 0.25 0] 200
_|py 0 0 0 n\_108 o 0 0 0
nt+1) = 0o P, 0 0 x<n3>— 0 05 0 0 x| 9
0 0 P3 0] N4 |0 0 0.25 0] 0
1.6(200) + 1.5(0) + 0.25(0) + 0(0)]
n(t+1) = 0.8(200) + 0(0)+ 0(0)+  0(0)
1 02000+ 05(0)+ 0(0)+ 0(0)
| 0(2000+  0(0)+ 0.25(0) + 0(0)]

320
160
0

| 0 ]

nt+1) =




Leslie Matrix

# Age structured growth - one time step
A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE)

[1,] 1
[2,] o.
[3,] ©
[4,] ©

NO <- matrix(c(200,0,0,0),ncol=1)

[,1]

[1,] 200
[2,] @
[3,] @
[4,] ©

N1 <- A %*% NO
[,1]

[1,] 320
[2,] 160
[3,] 0

[4,] 9



Leslie Matrix

A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE)

NO <- matrix(c(200,0,0,0),ncol=1)

years <- 6

N.projections <- matrix(@,nrow=nrow(A),ncol = years +1)

N.projections[,1]<- NO©

for(year in 1l:years){

N.projections[,year+1l]<- A %*% N.projections|[,year]

}

Age class

[1,]
[2,]
3]
[4)]

[1]

200

o O O

[,2]

320
160

3]

Year
[,4]
752 1607.2
256 601.6
80 128
0 20

3505.92
1285.76
300.8
32

6]

7613.312
2804.736
642.88
75.2

[,7]

16549.12
6090.65
1402.368
160.72



Leslie Matrix

A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE)
NO <- matrix(c(200,0,0,0),ncol=1)

years <- 6
N.projections <- matrix(@,nrow=nrow(A),ncol = years +1)
N.projections[,1]<- NO©

for(year in 1l:years){
N.projections[,year+1l]<- A %*% N.projections|[,year]
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Leslie Matrix (different starting structure)

A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE)
NO <- matrix(c(50,50,50,50),ncol=1)

years <- 6
N.projectionsl <- matrix(@,nrow=nrow(A),ncol = years +1)
N.projectionsl[,1]<- NO

for(year in 1l:years){
N.projectionsl[,year+1l]<- A %*% N.projectionsl[,year]

}

500 5000
!

Abundance by age class
50




Abundance by age class

10000
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Age distribution
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Abundance by age class

Dynamics initially strongly influenced by starting population age

distribution

However, populations quickly approach a stable and stationary age

distribution

Year
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Stable Age Distribution

* If Survival and Fertility schedules stay constant, the proportion
of individuals in the population at each age will stay constant
(Stable Age Structure) even as the population as a whole

increases.

* The proportion of the population within each age [c(x)] is the number in
that age divided by the total population size.

e "*(x)
Yo e TFI(x)

e ¢c(x) =



n(0) =

n(0)

200]

o

50

e 0]

150,

Stable age distribution

=200

=200

[1,]
[2)]
3]
[4,]

[1,]
[2)]
3]
[4,]

[1]
200.00
0.00
0.00
0.00
200.00

1.00
0.00
0.00
0.00

[1]
50.00
50.00
50.00
50.00
200.00

0.25
0.25
0.25
0.25

[.2]

320.00
160.00
0.00
0.00
480.00

0.67
0.33
0.00
0.00

[,2]

167.50
40.00
25.00
12.50

245.00

0.68
0.16
0.10
0.05

[,3]

[,4]

[,5]

[6]

[,7]

752.00 1607.20 3505.92 7613.3116549.12
601.60 1285.76 2804.74 6090.65
300.80 642.88 1402.37

256.00
80.00
0.00
1088.00

0.69
0.24
0.07
0.00

[,3]

334.25
134.00
20.00
6.25
494.50

0.68
0.27
0.04
0.01

128.00
20.00
2356.80

0.68
0.26
0.05
0.01

[,4]

32.00

75.20

160.72

5124.48 11136.13 24202.86

0.68
0.25
0.06
0.01

[,5]

0.68
0.25
0.06
0.01

6]

0.68
0.25
0.06
0.01

[,7]

740.80 1603.13 3487.39 7577.67
592.64 1282.50 2789.91

267.40
67.00
5.00
1080.20

0.69
0.25
0.06
0.00

133.70
16.75
2346.22

0.68
0.25
0.06
0.01

296.32
33.43

641.25
74.08

5099.64 11082.91

0.68
0.25
0.06
0.01

0.68
0.25
0.06
0.01



Finite Rate of Change

e Use population Change from n(t) to n(t+1) to
calculate the finite rate of change (A)

R (5
n(t—1)
280 480
« n(0) = 0 =200 A=m=2.4
| 0 ] r=Inl=In2.4 = 0.875
(320]
+ n(1) =07 =480
| 0 ]




Stable age distribution

[1] [,2] [,3] [,4] [,5] [,6] [,7]

[200] [1,] 200.00 320.00 752.00 1607.20 3505.92 7613.31 16549.12
[2,] 0.00 160.00 256.00 601.60 1285.76 2804.74 6090.65

0 =200 [3,] 0.00 0.00 80.00 128.00 300.80 642.88 1402.37
[4,] 0.00 0.00 0.00 20.00 32.00 75.20 160.72

U N 200.00 480.00 1088.00 2356.80 5124.48 11136.13 24202.86

lambda 2.40 2.27 2.17 2.17 2.17 2.17
r 0.88 0.82 0.77 0.78 0.78 0.78
n(t)
A= r=I/nA
n(t—1)

- 1] 2] 3] 4] 5] 6] 7]
50 [1,] 50.00 167.50 334.25 740.80 1603.13 3487.39 7577.67

[2,] 50.00 40.00 134.00 267.40 592.64 1282.50 2789.91
s =200 3 50.00  25.00 2000 67.00 13370 296.32 641.25
50 [4,] 50.00 12.50 6.25 5.00 16.75 33.43 74.08
- - N 200.00 245.00 49450 1080.20 2346.22 5099.64 11082.91

lambda 1.23 2.02 2.18 2.17 2.17 2.17

r 0.20 0.70 0.78 0.78 0.78 0.78



Assumptions

Assumptions associated with Exponential Growth...
Closed population

No genetic structure

No time lags

Within Age-structured Populations
Assume /(x) and b(x) schedules are constant

* no resource limitation



Cohort vs Static Life Tables

* Cohort Life Tables — follow an entire cohort from birth
to death to determine age-specific survivorship and fecundity
schedules.

e Static Life Table - cross section of the population at a

given time interval. Used to calculate short-term mortality
rates by comparing number of individuals within each
consecutive age class.

* Also assumes population has reached a stable age structure



Changes in Age structure of
populations over time

Changing age structure in Canadian Populations, and future projections

1971, Population: 22.0 million 2011, Population: 34.5 millicn 2030, Population: 41.7 millian
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State structured matrix model

Life Stage, rather than Age,

Models (Lefkovitch Matrices)

* Fecundity and survivorship may be

based more on life stage than
absolute age
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