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Age structured populations 



Variation in Carrying Capacity 

• Environmental Variation may cause carrying 
capacity to change over time 

• Variation could be: 

1. Random 

2. Cyclic 



Variation in Carrying Capacity 

• Random Variation in Carrying Capacity (K) 
• If r is not variable, but carrying capacity changes over time, 

result is complex growth patterns 

• When a population is above the carrying capacity, it 
declines at a faster rate than it will increase if it is at a 
corresponding similar point below the carrying capacity. 

• If the carrying capacity is described by a mean (𝑲 ) with an 

associated variance (𝝈𝑲
𝟐 ), a rough approximation of the 

mean population size will be: 

• 𝑁 = 𝐾 −
𝜎𝐾
2

2
  



Variation in Carrying Capacity 

• Random Variation in Carrying Capacity (K) 

 • The more variable 
the environment, the 
smaller the average 
population size.  

  
• If the intrinsic rate of 

increase (r) is large, 
the population 
closely  tracks 
changes in carrying 
capacity.   

• if the small intrinsic rate of increase (r) is small, the population do not 
fluctuate much in size as carrying capacity varies, but the population size 
(N) will tend to be overall somewhat smaller than a population that has 
a rapid intrinsic growth rate.  



Variation in Carrying Capacity 

• Periodic (cyclic) variation in Carrying Capacity 

• e.g. seasonal variation in resources 

 

• 𝐾𝑡 = 𝑘0 + 𝑘1cos (
2𝜋𝑡

𝑐
) 

• 𝐾𝑡 = carrying capacity at time t 

• 𝑘0 = is mean carrying capacity 

• 𝑘1 = the amplitude of the cycle 

• 𝑐 = the length of the cycle 

 

 



Variation in Carrying Capacity 

• Periodic (cyclic) variation in Carrying Capacity 
• length of the cycle acts as a time lag, so the behavior of the 

model depends on the factor rc (as it did previously with rτ) 

 



Variation in Carrying Capacity 

• if rc is large (>>1.0), then the 
population tends to track the 
fluctuations in the environment: 

• 𝑵𝒕 ≈ 𝒌𝟎 + 𝒌𝟏𝐜𝐨𝐬 (
𝟐𝝅𝒕

𝒄
) 

 

 

• If rc is very small (<<1.0), then the 
population tends to average out 
the fluctuations and persist at a 
level slightly below carrying 
capacity  

• 𝑵 ≈  𝒌𝟎
𝟐 − 𝒌𝒕

𝟐 

 

 



Age/stage structure populations 



Objectives 

• Representing age structured populations 

– Cohort life tables 

– Static life tables 

• Ro, r, G 

– Matrix population models 

• Leslie Matrix 

• Lefkovich Matrix 

– Individual-based population models 

 



Age-structured Populations 

• Exponential models assume no age-structure in 
populations 

• For many organisms, this may be an unrealistic 
assumption 

• Delays in contribution to population birth rates 

• Differences in death rates during different phases of 
an organism’s life history 

𝑁𝑡 = 𝑁0𝑒
𝑟𝑡 

𝑁𝑡+1 = 𝑁𝑡 + 𝑏 ∙ 𝑁𝑡 −𝑚 ∙ 𝑁𝑡 



Age/stage life history diagram 



Age-structured populations 

• Define by Age Class (i) 
• Individuals within age class (i) are between the age of 

i-1 and i.  
• Age classes run from 1-k. 
• Age structure: define fecundity and mortality rates for 

age classes based on time spans of significance to the 
life history of the species 

• Simplification of continuous processes (death) 

0 1 2 3 k Age (x) 

1 2 3 k Age Classi 



Stage structured populations 

• Stage Structure: define fecundity and survivorship 
rates for age groups based on time spans of 
significance to the life history of the species 

• Further simplification of continuous demographic 
changes and age structure 



Age/stage dependent processes 

• Survivorship 

• Fecundity 



Age-specific variation in (year-

standardized) annual adult survival in (a) 

female and (b) male song sparrows on 

Mandarte Island   

L.F Keller et al. Proc. R. Soc. B 2008;275:597-604 

Age and survival 



Survivorship l(x) 
• Survivorship Schedule l(x) 
• Cohort – group of individuals born at the same time and 

followed to death. 

 

 

Based on Skellam 1972 



Survivorship l(x) 

• Survivorship Schedule l(x) 
• Cohort – group of individuals born at the 

same time and followed to death. 

• Cohort Survival  - S(x) – number of the 
original cohort still alive at start of age 
(x) 

• Survivorship Schedule – l(x) – proportion 
of the original cohort that survives to age 
(x) 

• 𝑙 𝑥 =
𝑆 𝑥

𝑆 0
 

 

 

x S(x) l(x) 

0 500 1.0 

1 400 0.8 

2 200 0.4 

3 50 0.1 

4 0 0 



Survival Probability g(x) 

• To compare the survival of different ages directly, we must 
determine the probability of survival  [g(x)] from age (x) to 
age (x+1), given that an individual has already survived to age 
x. 

 

• 𝑔 𝑥 =
𝑙 𝑥+1

𝑙 𝑥
 

 

x S(x) l(x) g(x) 

0 500 1.0 0.8 

1 400 0.8 0.5 

2 200 0.4 0.25 

3 50 0.1 0 

4 0 0 



Natural Survivorship 



Age and clutch size (Fecundity) 



Fecundity b(x) 

• Fecundity Schedules 

• Average number of female offspring born per unit 
time to an individual female of a particular age. 

 
• Represented by age as 

births, b(x), or maternity, 
m(x) 

• If individuals do not 
reproduce within particular 
age categories, their 
fecundity schedule for that 
age is zero. 

x S(x) l(x) b(x) 

0 500 1.0 0 

1 400 0.8 2 

2 200 0.4 3 

3 50 0.1 1 

4 0 0 0 

Types of Fecundity Schedules: 
Semelparous/monocarpic – reproduce only once in lifetime 
Iteroparous/ polycarpic – reproduce multiple times through lifetime 



Life Tables 
• What is a life table? 

– “a table of age-specific survival and fecundity 
rates for a population” 

– A “bookkeeping” device used by ecologists and 
actuaries to track population numbers and vital 
rates across age 

– Often focused on tracking survival, but is useful 
for understanding population change 

– Life table analysis 
• Allows us to calculate key rates and population 

properties 
– Net reproductive rate per individual R0 

– Generation Time (G) 

– Instantaneous growth rate (r) 



Net Reproductive Rate R0 

• Net Reproductive Rate (R0) – 
the mean number of female 
offspring produced per female 
over her lifetime. 

𝑅0 =  𝑙 𝑥 𝑏(𝑥)

𝑘

𝑥=0

 

x S(x) l(x) g(x) b(x) l(x) b(x) 

0 500 1.0 0.8 0 0.0 

1 400 0.8 0.5 2 1.6 

2 200 0.4 0.25 3 1.2 

3 50 0.1 0 1 0.1 

4 0 0 0 0.0 

Σ = 2.9 



Generation Time (G) 

• R0 measures the increase in the population as 
a function of generation time. 

 

• To derive the intrinsic rate of increase in the 
population (r), we need to scale R0 to 
Generation Time (G) 



Generation Time (G) 

• Generation Time (G) - the average age of the 
parents of all offspring produced by a single 
cohort 

𝑮 =
 𝒍 𝒙  𝒃 𝒙  𝒙𝒌
𝒙=𝟎

 𝒍 𝒙  𝒃(𝒙)𝒌
𝒙=𝟎

 

G is typically greater than 1.0 for most populations. 



Generation Time (G) 
x S(x) l(x) g(x) b(x) l(x) b(x) l(x) b(x) x 

0 500 1.0 0.8 0 0.0 0.0 

1 400 0.8 0.5 2 1.6 1.6 

2 200 0.4 0.25 3 1.2 2.4 

3 50 0.1 0 1 0.1 0.3 

4 0 0 0 0.0 0.0 

Σ = 2.9 Σ = 4.3 

𝑮 =
 𝒍 𝒙  𝒃 𝒙  𝒙𝒌
𝒙=𝟎

 𝒍 𝒙  𝒃(𝒙)𝒌
𝒙=𝟎

=
𝟒.𝟑

𝟐.𝟗
= 1.483 years 

What would happen if species didn’t reproduce until 2? 



Approximating r 

• Use the relationship between generation time and Net 
reproductive rate to get an approximate value of r 

 

𝑵𝑮 = 𝑵𝟎𝒆
𝒓𝑮 

𝑵𝑮
𝑵𝟎
= 𝒆𝒓𝑮   𝑎𝑠 𝑅0≈

𝑁𝐺
𝑁0

 

 
 

𝑹𝟎 ≈ 𝒆
𝒓𝑮 

𝒍𝒏(𝑹𝟎) ≈ 𝒓𝑮 

𝒓 ≈
𝒍𝒏(𝑹𝟎)

𝑮
 



Euler Equation 

• This method is only an approximation of r 
• Euler Equation (“oiler”) used to derive exact 

values from lifetables:  

• 1 =   𝑒−𝑟𝑥𝑘
𝑥=0 𝑙 𝑥 𝑏(𝑥) 

 
1. Start with the estimate of r 
2. calculate out the  𝑒−𝑟𝑥𝑘

𝑥=0 𝑙 𝑥 𝑏(𝑥) from the tables 
3. See if it sums to 1.0 
4. If it is too high, plug in a larger value for r (as we are using a 

negative exponential).   
5. If too small, put in a smaller value. 

 
 



Euler Equation 

x S(x) l(x) g(x) b(x) l(x) b(x) l(x) b(x) x 𝒆−𝒓𝒙𝒍 𝒙 𝒃(𝒙) 

0 500 1.0 0.8 0 0.0 0.0 0.0 

1 400 0.8 0.5 2 1.6 1.6 0.78 

2 200 0.4 0.25 3 1.2 2.4 0.285 

3 50 0.1 0 1 0.1 0.3 0.012 

4 0 0 0 0.0 0.0 0.0 

Σ = 2.9 Σ = 4.3 Σ = 1.077 

𝒓 ≈
𝒍𝒏(𝑹𝟎)

𝑮
≈
𝒍𝒏 𝟐. 𝟗

𝟏. 𝟒𝟖𝟑
≈ 𝟎. 𝟕𝟏𝟖 



Euler Equation 

x S(x) l(x) g(x) b(x) l(x) b(x) l(x) b(x) x 𝒆−𝒓𝒙𝒍 𝒙 𝒃(𝒙) 

0 500 1.0 0.8 0 0.0 0.0 0.0 

1 400 0.8 0.5 2 1.6 1.6 0.756 

2 200 0.4 0.25 3 1.2 2.4 0.268 

3 50 0.1 0 1 0.1 0.3 0.0105 

4 0 0 0 0.0 0.0 0.0 

Σ = 2.9 Σ = 4.3 Σ = 1.035 

𝒕𝒓𝒚 𝒓 ≈ 𝟎. 𝟕𝟓 

𝒔𝒕𝒊𝒍𝒍 𝒕𝒐𝒐 𝒉𝒊𝒈𝒉… . 



Euler Equation 

x S(x) l(x) g(x) b(x) l(x) b(x) l(x) b(x) x 𝒆−𝒓𝒙𝒍 𝒙 𝒃(𝒙) 

0 500 1.0 0.8 0 0.0 0.0 0.0 

1 400 0.8 0.5 2 1.6 1.6 0.736 

2 200 0.4 0.25 3 1.2 2.4 0.254 

3 50 0.1 0 1 0.1 0.3 0.010 

4 0 0 0 0.0 0.0 0.0 

Σ = 2.9 Σ = 4.3 Σ = 1.0 

𝒕𝒓𝒊𝒂𝒍 𝒂𝒏𝒅 𝒆𝒓𝒓𝒐𝒓 − 𝒓 = 𝟎. 𝟕𝟕𝟔 

𝑁𝑡 = 𝑁0𝑒
𝑟𝑡 Can project future population size! 



Distribution within Age-classes 

• In addition to forecasting future population sizes, we 
can determine the distribution of those individuals 
within each age class (i) 

• Use age class notation 
– Number of individuals in time (t) in age class i is ni(t). 
– This can be expressed as a vector: 

𝑛 𝑡 =

𝑛1(𝑡)
𝑛2(𝑡)
𝑛3(𝑡)
𝑛4(𝑡)

 



Distribution within Age-classes 
• Relating this back to the life table 

• 𝑛 𝑡 =

𝑛1(𝑡)
𝑛2(𝑡)

𝑛3(𝑡)
𝑛4(𝑡)

=

500
400
200
50

 

x S(x) l(x) g(x) b(x) l(x) b(x) l(x) b(x) x 𝒆−𝒓𝒙𝒍 𝒙 𝒃(𝒙) 

0 500 1.0 0.8 0 0.0 0.0 0.0 

1 400 0.8 0.5 2 1.6 1.6 0.736 

2 200 0.4 0.25 3 1.2 2.4 0.254 

3 50 0.1 0 1 0.1 0.3 0.010 

4 0 0 0 0.0 0.0 0.0 

Σ = 2.9 Σ = 4.3 Σ = 1.0 

i 

1 

3 

2 

4 



Predicting Future Age Structure 

• To predict the age structure of a population from 
one time period n(t) to the next n(t+1), we need 
to determine two factors: 

 

• Survival Probability for each age class (Pi ) 
• Chance that an individual in age class i survives to 

age class i+1 

• Fertility of each age class (Fi ) 
• Average number of offspring produced by an 

individual in age class i 



Predicting Future Age Structure 

• To calculate Pi and Fi  some assumptions need 
to be made about when individuals reproduce 
and die! 

 

• Birth-pulse model 
• Individuals give birth to all offspring on the day 

they enter a new age class 

• Population is censuses immediately after 
breeding (postbreeding census) 



• Survival Probability (Pi ) - the probability that an individual 
in age class i survives to age class i+1. 
 
 
 

• number of individuals 𝒏𝒕+𝟏 that will be in the next time 
step (𝒕 + 𝟏) is a function of the number of individuals 𝒏𝒊 in 
the previous time step (t) and the survival probability for 
that time step 𝑷𝒊 
 
 
 

• This works for all age classes except i=1.  Individuals in the 
first age class depend on the fertility of individuals in all the 
age classes 

Survival Probability (Pi ) for age classes 

𝑷𝒊 =
𝒍(𝒊)

𝒍(𝒊 − 𝟏)
 

𝒏𝒕+𝟏 𝒕 + 𝟏 =  𝑷𝒊𝒏𝒊(𝒕) 



Predicting Future Age Structure 

• Calculating Survival Probability 

x i S(x) l(x) g(x) b(x) Pi l(x) b(x) l(x) b(x) x 𝒆−𝒓𝒙𝒍 𝒙 𝒃(𝒙) 

0 500 1.0 0.8 0 0.0 0.0 0.0 

1 1 400 0.8 0.5 2 0.80 1.6 1.6 0.736 

2 2 200 0.4 0.25 3 0.50 1.2 2.4 0.254 

3 3 50 0.1 0 1 0.25 0.1 0.3 0.010 

4 4 0 0 0 0 0.0 0.0 0.0 

Σ = 2.9 Σ = 4.3 Σ = 1.0 

𝑷𝒊 =
𝒍(𝒊)

𝒍(𝒊 − 𝟏)
 



• Fertility (Fi) -average number of offspring produced per 
female in age class i, adjusted by the survival 
probability for that age class 
 
 
 

• The number of individuals in age class 1 at time t+1 is 
the sum of the fertility of all age classes in the previous 
time. 
 

Fertility (Fi) for age classes 

𝑭𝒊 = 𝒃(𝒊)𝑷𝒊 

𝒏𝟏 𝒕 + 𝟏 =   𝑭𝒊𝒏𝒊(𝒕)

𝒌

𝒊=𝟏

 



Predicting Future Age Structure 

• Calculating Fertility 

x i S(x) l(x) g(x) b(x) Pi Fi l(x) b(x) l(x) b(x) x 𝒆−𝒓𝒙𝒍 𝒙 𝒃(𝒙) 

0 500 1.0 0.8 0 0.0 0.0 0.0 

1 1 400 0.8 0.5 2 0.80 1.60 1.6 1.6 0.736 

2 2 200 0.4 0.25 3 0.50 1.50 1.2 2.4 0.254 

3 3 50 0.1 0 1 0.25 0.25 0.1 0.3 0.010 

4 4 0 0 0 0 0 0.0 0.0 0.0 

Σ = 2.9 Σ = 4.3 Σ = 1.0 

𝑭𝒊 = 𝒃(𝒊)𝑷𝒊 



Predicting Future Age Structure 

0 1 2 3 4 

n1 

P2 

n3 n4 

1 2 3 4 Age Classi 

F1 
F2 F3 F4 

𝒏𝟏 𝒕 + 𝟏 = 𝑭𝟏𝒏𝟏 𝒕 + 𝑭𝟐𝒏𝟐 𝒕 + 𝑭𝟑𝒏𝟑 𝒕 + 𝑭𝟒𝒏𝟒 𝒕  
𝒏𝟐(𝒕 + 𝟏) = 𝑷𝟏𝒏𝟏(𝒕) 
𝒏𝟑(𝒕 + 𝟏) = 𝑷𝟐𝒏𝟐(𝒕) 
𝒏𝟒(𝒕 + 𝟏) = 𝑷𝟑𝒏𝟑(𝒕) 
 

P1 

n2 

P3 



Predicting Future Age Structure 

n1 

P2 

n3 n4 

1 2 3 4 Age Classi 

F1 
F2 F3 F4 

𝒏𝟏 𝒕 + 𝟏 = 𝑭𝟏𝒏𝟏 𝒕 + 𝑭𝟐𝒏𝟐 𝒕 + 𝑭𝟑𝒏𝟑 𝒕 + 𝑭𝟒𝒏𝟒 𝒕  
𝒏𝟐(𝒕 + 𝟏) = 𝑷𝟏𝒏𝟏(𝒕) 
𝒏𝟑(𝒕 + 𝟏) = 𝑷𝟐𝒏𝟐(𝒕) 
𝒏𝟒(𝒕 + 𝟏) = 𝑷𝟑𝒏𝟑(𝒕) 
 

P1 

n2 

P3 

What else would be needed if this is stage instead of age based? 



Predicting Age Structure 

• Cumbersome with life-table data 

• Use matrix formulation 

– Leslie matrix (age structured population) 

– Lefkovich matrix (stage structured population) 

 

𝒏𝟏 𝒕 + 𝟏 = 𝑭𝟏𝒏𝟏 𝒕 + 𝑭𝟐𝒏𝟐 𝒕 + 𝑭𝟑𝒏𝟑 𝒕 + 𝑭𝟒𝒏𝟒 𝒕  
𝒏𝟐(𝒕 + 𝟏) = 𝑷𝟏𝒏𝟏(𝒕) 
𝒏𝟑(𝒕 + 𝟏) = 𝑷𝟐𝒏𝟐(𝒕) 
𝒏𝟒(𝒕 + 𝟏) = 𝑷𝟑𝒏𝟑(𝒕) 
 



Leslie Matrix  
Representing Growth in matrix of k x k age classes 

n1 

P2 

n3 n4 

1 2 3 4 Age Classi 

F1 
F2 F3 F4 

P1 

n2 

P3 

A=

𝑭𝟏
𝑷𝟏
0

𝑭𝟐
0
𝑷𝟐

0 0

   

𝑭𝟑 𝑭𝟒
0
0
𝑷𝟑

0
0
0

 

Columns: age class at time t 

Rows: age 
class at 
time t +1 Fertility rates 

Survival probability 



Leslie Matrix 

x i l(x) b(x) Pi Fi 

0 1.0 0 

1 1 0.8 2 0.80 1.60 

2 2 0.4 3 0.50 1.50 

3 3 0.1 1 0.25 0.25 

4 4 0 0 0 0 

A=

𝑭𝟏
𝑷𝟏
0

𝑭𝟐
0
𝑷𝟐

0 0

   

𝑭𝟑 𝑭𝟒
0
0
𝑷𝟑

0
0
0

 

A=

𝟏. 𝟔
𝟎. 𝟖𝟎
0

𝟏. 𝟓
0
𝟎. 𝟓𝟎

0 0

   

𝟎. 𝟐𝟓 𝟎
0
0
𝟎. 𝟐𝟓

0
0
0

 



Leslie Matrix 

• Forecasting  future age structure (n at time t+1) based current 
population structure (n at time t) using Fertility and Survival 
Probability from the Leslie Matrix. 

𝑛 𝑡 + 1 = 𝐴 𝑛 𝑡  

𝑛 𝑡 + 1 =

𝑭𝟏
𝑷𝟏
0

𝑭𝟐
0
𝑷𝟐

0 0

   

𝑭𝟑 𝑭𝟒
0
0
𝑷𝟑

0
0
0

 𝒙 

𝑛1
𝑛2
𝑛3
𝑛4

 



Examples of Using Leslie Matrix 
• Start with a cohort of 200 individuals in age-class 1 with the 

Fertility and Survival probabilities in our example: 

n1 

P2=0.5 

n3 n4 

1 2 3 4 Age Classi 

F1=1.6 
F2=1.5 F3=0.25 F4=0 

P1=0.8 

n2 

P3= 0.25 

𝑛 𝑡 + 1 =

𝑭𝟏
𝑷𝟏
0

𝑭𝟐
0
𝑷𝟐

0 0

   

𝑭𝟑 𝑭𝟒
0
0
𝑷𝟑

0
0
0

 𝒙 

𝑛1
𝑛2
𝑛3
𝑛4

=

1.6
0.8
0

1.5
0
0.5

0 0

   

0.25 0
0
0
0.25

0
0
0

 𝒙 

200
0
0
0

 



Examples of Using Leslie Matrix 

 

𝑛 𝑡 + 1 =

𝑭𝟏
𝑷𝟏
0

𝑭𝟐
0
𝑷𝟐

0 0

   

𝑭𝟑 𝑭𝟒
0
0
𝑷𝟑

0
0
0

 𝒙 

𝑛1
𝑛2
𝑛3
𝑛4

=

1.6
0.8
0

1.5
0
0.5

0 0

   

0.25 0
0
0
0.25

0
0
0

 𝒙 

200
0
0
0

 

 
 

𝑛 𝑡 + 1 =

1.6 200 +
0.8 200 +
0 200 +

1.5 0 +
0 0 +
0.5 0 +

0 200 + 0 0 +

   

0.25 0 + 0(0)

0 0 +
0 0 +
0.25 0 +

0(0)
0(0)
0(0)

 

 

𝑛 𝑡 + 1 =

320
160
0
0

 

 
 



Leslie Matrix 
# Age structured growth - one time step 
A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE) 
 
 
 
 
 
 
 
N0 <- matrix(c(200,0,0,0),ncol=1) 
 
 
 
 
 
 
N1 <- A %*% N0 

     [,1] [,2] [,3] [,4] 
[1,]  1.6  1.5 0.25    0 
[2,]  0.8  0.0 0.00    0 
[3,]  0.0  0.5 0.00    0 
[4,]  0.0  0.0 0.25    0 

     [,1] 
[1,]  200 
[2,]    0 
[3,]    0 
[4,]    0 

     [,1] 
[1,]  320 
[2,]  160 
[3,]    0 
[4,]    0 



Leslie Matrix 
A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE) 
N0 <- matrix(c(200,0,0,0),ncol=1) 
 
years <- 6 
N.projections <- matrix(0,nrow=nrow(A),ncol = years +1) 
N.projections[,1]<- N0 
 
for(year in 1:years){ 
    N.projections[,year+1]<- A %*% N.projections[,year] 
} 

[,1] [,2] [,3] [,4] [,5] [,6] [,7] 

[1,] 200 320 752 1607.2 3505.92 7613.312 16549.12 

[2,] 0 160 256 601.6 1285.76 2804.736 6090.65 
[3,] 0 0 80 128 300.8 642.88 1402.368 

[4,] 0 0 0 20 32 75.2 160.72 

Year 

Age class 



Leslie Matrix 
A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE) 
N0 <- matrix(c(200,0,0,0),ncol=1) 
 
years <- 6 
N.projections <- matrix(0,nrow=nrow(A),ncol = years +1) 
N.projections[,1]<- N0 
 
for(year in 1:years){ 
    N.projections[,year+1]<- A %*% N.projections[,year] 
} 



Leslie Matrix (different starting structure) 

A <- matrix(c(1.6,1.5,0.25,0,0.8,0,0,0,0,0.5,0,0,0,0,0.25,0), nrow=4, byrow=TRUE) 
N0 <- matrix(c(50,50,50,50),ncol=1) 
 
years <- 6 
N.projections1 <- matrix(0,nrow=nrow(A),ncol = years +1) 
N.projections1[,1]<- N0 
 
for(year in 1:years){ 
    N.projections1[,year+1]<- A %*% N.projections1[,year] 
} 



Age distribution 

• Dynamics initially strongly influenced by starting population age 
distribution 

• However, populations quickly approach a stable and stationary age 
distribution  

𝑛 𝟎 =

50
50
50
50

 = 200 𝑛 𝟎 =

200
0
0
0

 = 200 



Stable Age Distribution 

• If Survival and Fertility schedules stay constant, the proportion 
of individuals in the population at each age will stay constant 
(Stable Age Structure) even as the population as a whole 
increases. 

• The proportion of the population within each age [c(x)] is the number in 
that age divided by the total population size. 

 

• 𝑐 𝑥 =  
𝑒−𝑟𝑥𝑙(𝑥)

 𝑒−𝑟𝑥𝑙(𝑥)𝑘
𝑥=0

 

 

 



Stable age distribution 

𝑛 𝟎 =

50
50
50
50

 = 200 

𝑛 𝟎 =

200
0
0
0

 = 200 

[,1] [,2] [,3] [,4] [,5] [,6] [,7] 

[1,] 200.00 320.00 752.00 1607.20 3505.92 7613.31 16549.12 
[2,] 0.00 160.00 256.00 601.60 1285.76 2804.74 6090.65 
[3,] 0.00 0.00 80.00 128.00 300.80 642.88 1402.37 

[4,] 0.00 0.00 0.00 20.00 32.00 75.20 160.72 
N 200.00 480.00 1088.00 2356.80 5124.48 11136.13 24202.86 

1.00 0.67 0.69 0.68 0.68 0.68 0.68 
0.00 0.33 0.24 0.26 0.25 0.25 0.25 

0.00 0.00 0.07 0.05 0.06 0.06 0.06 
0.00 0.00 0.00 0.01 0.01 0.01 0.01 

[,1] [,2] [,3] [,4] [,5] [,6] [,7] 

[1,] 50.00 167.50 334.25 740.80 1603.13 3487.39 7577.67 
[2,] 50.00 40.00 134.00 267.40 592.64 1282.50 2789.91 
[3,] 50.00 25.00 20.00 67.00 133.70 296.32 641.25 

[4,] 50.00 12.50 6.25 5.00 16.75 33.43 74.08 
N 200.00 245.00 494.50 1080.20 2346.22 5099.64 11082.91 

0.25 0.68 0.68 0.69 0.68 0.68 0.68 
0.25 0.16 0.27 0.25 0.25 0.25 0.25 

0.25 0.10 0.04 0.06 0.06 0.06 0.06 
0.25 0.05 0.01 0.00 0.01 0.01 0.01 

c(x) 

c(x) 



Finite Rate of Change 

• Use population Change from n(t) to n(t+1) to 
calculate the finite rate of change (λ)  

• λ=
n(t)
n(t−1)

 

• 𝑛 𝟎 =

200
0
0
0

 = 200 

• 𝑛 𝟏 =

320
160
0
0

 = 480 

 

 

λ=
480

200
= 2.4 

r = ln λ= 𝑙𝑛2.4 = 0.875 



Stable age distribution 

𝑛 𝟎 =

50
50
50
50

 = 200 

𝑛 𝟎 =

200
0
0
0

 = 200 

[,1] [,2] [,3] [,4] [,5] [,6] [,7] 
[1,] 200.00 320.00 752.00 1607.20 3505.92 7613.31 16549.12 
[2,] 0.00 160.00 256.00 601.60 1285.76 2804.74 6090.65 

[3,] 0.00 0.00 80.00 128.00 300.80 642.88 1402.37 
[4,] 0.00 0.00 0.00 20.00 32.00 75.20 160.72 

N 200.00 480.00 1088.00 2356.80 5124.48 11136.13 24202.86 
lambda 2.40 2.27 2.17 2.17 2.17 2.17 
r 0.88 0.82 0.77 0.78 0.78 0.78 

[,1] [,2] [,3] [,4] [,5] [,6] [,7] 

[1,] 50.00 167.50 334.25 740.80 1603.13 3487.39 7577.67 
[2,] 50.00 40.00 134.00 267.40 592.64 1282.50 2789.91 

[3,] 50.00 25.00 20.00 67.00 133.70 296.32 641.25 
[4,] 50.00 12.50 6.25 5.00 16.75 33.43 74.08 
N 200.00 245.00 494.50 1080.20 2346.22 5099.64 11082.91 

lambda 1.23 2.02 2.18 2.17 2.17 2.17 
r 0.20 0.70 0.78 0.78 0.78 0.78 

λ=
n(t)

n(t−1)
 r = ln λ 



Assumptions 

• Assumptions associated with Exponential Growth… 

• Closed population 

• No genetic structure 

• No time lags 

 

• Within Age-structured Populations 

• Assume l(x) and b(x) schedules are constant  
• no resource limitation 



Cohort vs Static Life Tables 

• Cohort Life Tables – follow an entire cohort from birth 

to death to determine age-specific survivorship and fecundity 
schedules. 

 

• Static Life Table – cross section of the population at a 

given time interval.  Used to calculate short-term mortality 
rates by comparing number of individuals within each 
consecutive age class. 

• Also assumes population has reached a stable age structure 



Changes in Age structure of 
populations over time 

Changing age structure in Canadian Populations, and future projections 



State structured matrix model 

Life Stage, rather than Age, 
Models (Lefkovitch Matrices) 
• Fecundity and survivorship may be 

based more on life stage than 
absolute age 

                 egg    tadpole   adult 
𝒆𝒈𝒈
𝒕𝒂𝒅𝒑𝒐𝒍𝒆
𝒂𝒅𝒖𝒍𝒕

𝟎 𝟎 𝑭𝒂−𝒆
𝑷𝒆−𝒕 𝑷𝒕−𝒕 𝟎
𝟎 𝑷𝒕−𝒂 𝑷𝒂−𝒂

 

negg nadult 

Egg Tadpole Adult 
Life Stage 

Fadult to egg 

Pegg-tadpole 

ntadpole 

Ptadpole to adult 

Ptadpole to 

tadpole Padult to 

adult 


