BIOL 410 Population and Community Ecology

Density-dependent growth 2
Objectives

- Time lags
- Amplitude, period
- Equilibrium
- Damped oscillations
- Stable limit cycles
- Discrete logistic growth model
- Chaos vs. stochasticity
Logistic population growth

\[N < \text{seq}(0, 100, 1) \]
\[t < \text{seq}(1, 20, 0.1) \]
\[N_0 < 1 \]
\[K < 60 \]
\[r < 0.6 \]
\[N_t < \frac{K}{1 + \left(\frac{K - N_0}{N_0}\right) \exp(-r \cdot t)} \]
Time Lags

• In a continuously growing population, adding new individuals into the population causes a continuous decrease in the per capita rate of population growth \[
\left(\frac{1}{N}\right)\left(\frac{dN}{dt}\right)
\]

• However, in many populations there are time lags \(\tau\) in response to changes in population size

What could cause these time lags?
What could produce time lags in density dependence?
\[
\frac{dN}{dt} = rN \left(1 - \frac{N_{t-\tau}}{K}\right) \quad \tau = \text{time lag}
\]
Time Lags

\[\frac{dN}{dt} = rN \left(1 - \frac{N_{t-\tau}}{K} \right) \]

- Two things will affect this equation.
 1. The length of the time lag (\(\tau\))
 2. The response time of the population – this is inversely related to the intrinsic rate of increase (i.e. \(1/r\)).
Time Lags

• The ratio of the time lag to the response time $\frac{\tau}{1/r}$, (which is simply $r\tau$) controls population growth.

• If $r\tau$ is small (between 0 to 0.368)
 • the population increases smoothly to a carrying capacity

• If $r\tau$ is moderate (0.368 to 1.570)
 • the population first overshoots then undershoots carrying capacity, followed by dampening oscillation to reach carrying capacity over time.

• If $r\tau$ is large (>1.570)
 • the population goes into a stable limit cycle of oscillations above and below carrying capacity that go on indefinitely.
Cyclic Populations

- Population Size (N)
- Time (t)
- Amplitude
- Period
- K
Logistic population growth

© 2012 Nature Education
Time Lags

\[
\frac{dN}{dt} = rN \left(1 - \frac{N_{t-\tau}}{K}\right)
\]

\[
\frac{\tau}{1/r'} = r\tau
\]
Time lags (continuous population)

\[
\frac{dN}{dt} = rN \left(1 - \frac{N_{t-\tau}}{K}\right)
\]

\[
r \leftarrow 0.4 \\
K \leftarrow 1000 \\
\tau \leftarrow 0
\]

\[
t \leftarrow \text{seq}(1,100,1) \\
N0 \leftarrow 100 \\
r \leftarrow 0.4 \\
K \leftarrow 1000 \\
\tau \leftarrow 0 \\
r*tau \leftarrow r*tau \\
N \leftarrow \text{seq}(0,\text{length}(t),1) \\
N[1] \leftarrow N0 \\
lambda \leftarrow \exp(r) \\
\text{for}(ts \ in \ t)\{ \\
\text{etau} \leftarrow \tau \\
\text{if}(ts <= \tau) \ \text{etau} \leftarrow 0 \\
N[ts+1] \leftarrow \lambda*N[ts]/(1+((N[ts-\text{etau}]*\lambda-1))/K)) \\
\}
\]
Time lags (continuous population)

\[\frac{dN}{dt} = r N \left(1 - \frac{N_{t-\tau}}{K} \right) \]

\[\frac{\tau}{1/r'} = r\tau \]

\[0 < r\tau < 0.368 < r\tau < 1.57 \]

\[r \leftarrow 0.4 \]
\[K \leftarrow 1000 \]

\[\tau \leftarrow 0, \quad r\tau = 0 \]
\[\tau \leftarrow 2, \quad r\tau = 0.8 \]
Time lags (continuous population)

\[
\frac{dN}{dt} = rN \left(1 - \frac{N_{t-\tau}}{K}\right)
\]

\[
\frac{\tau}{1/r'} = r\tau
\]

\[
0 < r\tau < 0.368 < r\tau < 1.57
\]

\[
r \leftarrow 0.4
\]

\[
K \leftarrow 1000
\]

\[
\tau \leftarrow 0, \quad r\tau = 0
\]

\[
\tau \leftarrow 2, \quad r\tau = 0.8
\]

\[
\tau \leftarrow 3, \quad r\tau = 1.2
\]
Time lags (continuous population)

\[
\frac{dN}{dt} = rN \left(1 - \frac{N_{t-\tau}}{K} \right)
\]

\[
\frac{\tau}{1/r'} = r\tau
\]

\[
0 < r\tau < 0.368 < r\tau < 1.57
\]

\[
r < 0.4
\]
\[
K < 1000
\]
\[
\tau < 0, \quad r\tau = 0
\]
\[
\tau < 2, \quad r\tau = 0.8
\]
\[
\tau < 3, \quad r\tau = 1.2
\]
\[
\tau < 4, \quad r\tau = 1.6
\]
Time lags (continuous population)

\[
\frac{dN}{dt} = rN \left(1 - \frac{N_{t-\tau}}{K}\right)
\]

\[
\frac{\tau}{1/r'} = r\tau
\]

\[
0 < r\tau < 0.368 < r\tau < 1.57
\]

\[
r < 0.4
\]

\[
K < 1000
\]

\[
\tau < 0, \ r\tau = 0
\]

\[
\tau < 4, \ r\tau = 1.6
\]

\[
\tau < 5, \ r\tau = 2.0
\]
Time lags (continuous population)

\[
\frac{dN}{dt} = rN \left(1 - \frac{N_{t-\tau}}{K} \right)
\]

\[
\frac{\tau}{1/r'} = r\tau
\]

\[
0.368 < r\tau < 1.57 < r\tau
\]

\[
r \leftarrow 0.4
\]
\[
K \leftarrow 1000
\]

\[
\tau \leftarrow 0, \ r\tau = 0
\]
\[
\tau \leftarrow 5, \ r\tau = 2.0
\]
\[
\tau \leftarrow 6, \ r\tau = 2.4
\]
\[
\tau \leftarrow 7, \ r\tau = 2.8
\]
Time lags (continuous population)

\[\frac{dN}{dt} = rN \left(1 - \frac{N_{t-\tau}}{K} \right) \]

- What will happen if these populations exhibiting limit cycles are disturbed?
- Land slip, fire?
Time lags (continuous population)

\[
\frac{dN}{dt} = rN \left(1 - \frac{N_{t-\tau}}{K}\right)
\]

\[
r \leftarrow 0.4 \\
K \leftarrow 1000
\]

\[
\tau \leftarrow 0, \quad r\tau = 0
\]
Time lags (continuous population)

\[\frac{dN}{dt} = rN \left(1 - \frac{N_{t-\tau}}{K} \right) \]

\[\frac{\tau}{1/r} = r\tau \]

\[0.368 < r\tau < 1.57 < r\tau \]

\[K \leq 1000 \]

\[\tau \leq 0, \ r \leq 0.4, \ r\tau = 0 \]

\[\tau \leq 3, \ r \leq 0.4, \ r\tau = 1.2 \]

\[\tau \leq 3, \ r \leq 0.5, \ r\tau = 1.5 \]
Cycles in ecological populations

Canadian lynx data — the number of lynx trapped each year in the McKenzie river district of northwest Canada (1821–1934).
Daphnia pulex

Egg density dynamics during cycles.

St Kilda, Scotland
Soay Sheep

http://soaysheep.biology.ed.ac.uk/
• Approximately 3 years between population crashes
• What drives this cycle?

- Grenfell et al. 1992
 - Competition for food, highly overcompensating density-dependent mortality
- Grenfell et al. 1998
 - Weather and density dependence
- Coulson et al. 2001
 - Population age-structure, sex-structure, weather, density-dependence
- Ozgul et al. 2009
 - Size of sheep (as well as other factors)

http://soaysheep.biology.ed.ac.uk/
Discrete logistic models

\[\frac{dN}{dt} = rN \left(1 - \frac{N_{t-\tau}}{K} \right) \]

\[N_{t+1} = N_t + r_d N_t \left(1 - \frac{N_t}{K} \right) \]

- The discrete population growth model has a built in time lag of 1.0 (i.e. intergeneration time)
 - In continuous growing population, lag effects are influenced by the product of rate of increase and time lag \((r\tau)\).
 - In discrete population, time lag is 1, so dynamics of pop growth are essentially a function of discrete growth factor \((r_d)\).
Discrete Population Growth – Logistic Models

\[N_{t+1} = N_t + r_d N_t \left(1 - \frac{N_t}{K} \right) \]

\[r_d = 0.4 \]

```r

t <- seq(1,50,1)
N0 <- 100
rd <- 0.4
K <- 500

N <- seq(0,length(t),1)
N[1] <- N0

for(ts in t){
}
```
Discrete Population Growth – Logistic Models

- Dynamics of Discrete Population

1. If the Discrete Growth Factor is small ($r_d<2.0$), then you get dampened oscillations to a stable population at K.

\[r_d = 1.5 \]
Discrete Population Growth – Logistic Models

• Dynamics of Discrete Population

2. If the Discrete Growth Factor is a bit larger ($r_d > 2.0$ but less than 2.449), then you get stable two-point limit cycles.

$r_d = 2.2$
Discrete Population Growth – Logistic Models

• Dynamics of Discrete Population

3. When the Discreet Growth Factor is between 2.449 to 2.570 (2.449 < \(r_d \) < 2.57), you get growth with complex limit cycles, with varying number of “points”.

\[r_d = 2.56 \]
Discrete Population Growth – Logistic Models

• Dynamics of Discrete Population

4. When the Discreet Growth Factor is above 2.570, the limit cycles break down and the population grows in a non-repeating pattern (chaos)

\[r_d = 2.7 \]
Discrete Population Growth – Logistic Models

- Chaos vs Stochasticity

\[r_d = 2.7 \]

\[N_0 = 100 \]

\[N_0 = 101 \]
Variation in Carrying Capacity

• Environmental Variation may cause carrying capacity to change over time

• Variation could be:
 1. Random
 2. Cyclic
Variation in Carrying Capacity

- Random Variation in Carrying Capacity (K)
 - If \(r \) is not variable, but carrying capacity changes over time, result is complex growth patterns
 - When a population is above the carrying capacity, it declines at a faster rate than it will increase if it is at a corresponding similar point below the carrying capacity.
 - If the carrying capacity is described by a mean (\(\bar{K} \)) with an associated variance (\(\sigma_{K}^2 \)), a rough approximation of the mean population size will be:
 \[
 \bar{N} = \bar{K} - \frac{\sigma_{K}^2}{2}
 \]
Variation in Carrying Capacity

- **Random Variation in Carrying Capacity (K)**
 - The more variable the environment, the smaller the average population size.
 - If the intrinsic rate of increase \(r \) is large, the population closely tracks changes in carrying capacity.
 - If the small intrinsic rate of increase \(r \) is small, the population do not fluctuate much in size as carrying capacity varies, but the population size \(N \) will tend to be overall somewhat smaller than a population that has a rapid intrinsic growth rate.
Variation in Carrying Capacity

- Periodic (cyclic) variation in Carrying Capacity
 - e.g. seasonal variation in resources

\[K_t = k_0 + k_1 \cos \left(\frac{2\pi t}{c} \right) \]

- \(K_t \) = carrying capacity at time \(t \)
- \(k_0 \) = is mean carrying capacity
- \(k_1 \) = the amplitude of the cycle
- \(c \) = the length of the cycle
Variation in Carrying Capacity

• Periodic (cyclic) variation in Carrying Capacity
 • length of the cycle acts as a time lag, so the behavior of the model depends on the factor rc (as it did previously with $r\tau$)
Variation in Carrying Capacity

- If rc is large (>>1.0), then the population tends to track the fluctuations in the environment:
 \[N_t \approx k_0 + k_1 \cos\left(\frac{2\pi t}{c}\right) \]

- If rc is very small (<<1.0), then the population tends to average out the fluctuations and persist at a level slightly below carrying capacity
 \[\bar{N} \approx \sqrt{k_0^2 - k_t^2} \]