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Objectives 

• Time lags 

• Amplitude, period 

• Equilibrium 

• Damped oscillations 

• Stable limit cycles 

• Discrete logistic growth model 

• Chaos vs. stochasticity 

 



Logistic population growth 

N <- seq(0,100,1) 
t <- seq(1,20,0.1) 
N0 <- 1 
K <- 60 
r <- 0.6 
 
Nt <- K/(1+((K-N0)/N0)*exp(-r*t)) 



Time Lags 

• In a continuously growing population, adding new 
individuals into the population causes a continuous 
decrease in the per capita rate of population 
growth [(1/N)(dN/dt)] 

 

• However, in many populations there are time lags 
(τ) in response to changes in population size 

 

 What could cause these time lags? 



Time Lags 
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What could produce time lags in density dependence? 



Time Lags 

t                        t+1                            t+2                               t+3                                 t+4  

𝒅𝑵

𝒅𝒕
= 𝒓𝑵 𝟏 −

𝑵𝒕−𝝉

𝑲
 τ = time lag 



Time Lags 

•
𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁𝑡−𝜏

𝐾
 

 

• Two things will affect this equation. 

1.The length of the time lag (τ) 

2.The response time of the population – this is inversely related 
to the intrinsic rate of increase (i.e. 1/r).  



Time Lags 

• The ratio of the time lag to the response time 
𝝉

𝟏/𝒓
, 

(which is simply rτ) controls population growth.  

 
• If rτ is small (between 0 to 0.368) 

• the population increases smoothly to a carrying capacity 

• If rτ is moderate (0.368 to 1.570) 
• the population first overshoots then undershoots carrying 

capacity, followed by dampening oscillation to reach carrying 
capacity over time. 

• If rτ is large (>1.570) 
• the population goes into a stable limit cycle of oscillations 

above and below carrying capacity that go on indefinitely.  

 



Cyclic Populations 
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Logistic population growth 
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Time Lags 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁𝑡−𝜏
𝐾

 

𝝉

𝟏/𝒓
, = rτ  



Time lags (continuous population) 

r <- 0.4 
K <- 1000 
τ <- 0 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁𝑡−𝜏
𝐾

 

t <- seq(1,100,1) 
N0 <- 100 
r <- 0.4 
K <- 1000 
tau <- 0 
rtau <- r*tau 
N <- seq(0,length(t),1) 
N[1]<-N0 
lambda <- exp(r) 
for(ts in t){ 
etau <- tau 
if(ts <= tau) etau <- 0 
  N[ts+1] <- lambda*N[ts]/(1+((N[ts-     
  etau]*(lambda-1))/K)) 
} 



Time lags (continuous population) 

r <- 0.4 
K <- 1000 
 
τ <- 0, rτ = 0 
τ <- 2, rτ = 0.8 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁𝑡−𝜏
𝐾

 

𝝉

𝟏/𝒓
, = rτ  

0 < rτ < 0.368 < rτ < 1.57 



Time lags (continuous population) 

r <- 0.4 
K <- 1000 
 
τ <- 0, rτ = 0 
τ <- 2, rτ = 0.8 
τ <- 3, rτ = 1.2 
 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁𝑡−𝜏
𝐾

 

𝝉

𝟏/𝒓
, = rτ  

0 < rτ < 0.368 < rτ < 1.57 



Time lags (continuous population) 

r <- 0.4 
K <- 1000 
 
τ <- 0, rτ = 0 
τ <- 2, rτ = 0.8 
τ <- 3, rτ = 1.2 
τ <- 4, rτ = 1.6 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁𝑡−𝜏
𝐾

 

𝝉

𝟏/𝒓
, = rτ  

0 < rτ < 0.368 < rτ < 1.57 



Time lags (continuous population) 

r <- 0.4 
K <- 1000 
 
τ <- 0, rτ = 0 
τ <- 4, rτ = 1.6 
τ <- 5, rτ = 2.0 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁𝑡−𝜏
𝐾

 

𝝉

𝟏/𝒓
, = rτ  

0 < rτ < 0.368 < rτ < 1.57 



Time lags (continuous population) 

r <- 0.4 
K <- 1000 
 
τ <- 0, rτ = 0 
τ <- 5, rτ = 2.0 
τ <- 6, rτ = 2.4 
τ <- 7, rτ = 2.8 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁𝑡−𝜏
𝐾

 

𝝉

𝟏/𝒓
, = rτ  

0.368 < rτ < 1.57 < rτ 



Time lags (continuous population) 

• What will happen if 
these  populations 
exhibiting limit cycles 
are disturbed?  

• Land slip, fire? 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁𝑡−𝜏
𝐾

 



Time lags (continuous population) 

r <- 0.4 
K <- 1000 
 
τ <- 0, rτ = 0 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁𝑡−𝜏
𝐾

 

What is the 
impact of  
τ <- 0? 



Time lags (continuous population) 

K <- 1000 
 
τ <- 0, r <- 0.4, rτ = 0 
τ <- 3, r <- 0.4, rτ = 1.2 
τ <- 3, r <- 0.5, rτ = 1.5 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁𝑡−𝜏
𝐾

 

𝝉

𝟏/𝒓
, = rτ  

0.368 < rτ < 1.57 < rτ 



Cycles in ecological populations 

Canadian lynx data — the number of 
lynx trapped each year in the McKen-
zie river district of northwest Canada 
(1821−1934).   



E McCauley et al. Nature 455, 1240-1243 (2008) doi:10.1038/nature07220 

Egg density dynamics during cycles. 

Daphnia pulex 



St Kilda, Scotland 
Soay Sheep 

http://soaysheep.biology.ed.ac.uk/ 



Grenfell, B. T., O. F. Price, S. D. Albon, and T. H. Clutton-Brock. 
1992. Overcompensation and population-cycles in an ungulate. 
Nature 355:823-826.  

• Approximately 3 years between population crashes 
• What drives this cycle? 



• Grenfell et al. 1992 
– Competition for food, highly overcompensating density-dependent mortality 

• Grenfell et al. 1998 
– Weather and density dependence 

• Coulson et al. 2001 
– Population age-strucure, sex-structure, weather, density-dependence 

• Ozgul et al.2009 
– Size of sheep (as well as other factors) 

http://soaysheep.biology.ed.ac.uk/ 



Discrete logistic models 

𝑁𝑡+1 = 𝑁𝑡 + 𝑟𝑑𝑁𝑡 1 −
𝑁𝑡
𝐾

 

• The discrete population growth model has a built in 
time lag of 1.0 (i.e. intergeneration time) 
– In continuous growing population, lag effects are 

influenced by the product of rate of increase and time 
lag(rτ). 

– In discrete population, time lag is 1, so dynamics of pop 
growth are essentially a function of discrete growth 
factor (rd) 

 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁𝑡−𝜏
𝐾

 



Discrete Population Growth – Logistic 
Models 

𝑁𝑡+1 = 𝑁𝑡 + 𝑟𝑑𝑁𝑡 1 −
𝑁𝑡
𝐾

 

t <- seq(1,50,1) 
N0 <- 100 
rd  <- 0.4 
K <- 500 
 
N <- seq(0,length(t),1) 
N[1]<-N0 
 
for(ts in t){ 
  N[ts+1]  <- N[ts]  + rd*N[ts]*(1-(N[ts]/K)) 
} 

rd = 0.4 



Discrete Population Growth – Logistic 
Models 

• Dynamics of Discrete Population 
1. If the Discrete Growth Factor is small (rd<2.0), then you get 

dampened oscillations to a stable population at K 

rd = 1.5 



Discrete Population Growth – Logistic 
Models 

• Dynamics of Discrete Population 
2. If the Discrete Growth Factor is a bit larger (rd >2.0 but less 

than 2.449), then you get stable two-point limit cycles.  

rd = 2.2 



Discrete Population Growth – Logistic 
Models 

• Dynamics of Discrete Population 
3. When the Discreet Growth Factor is between 2.449 to 2.570 

(2.449<rd>2.57), you get growth with complex limit cycles, 
with varying number of “points”.  

 

rd = 2.56 



Discrete Population Growth – Logistic 
Models 

• Dynamics of Discrete Population 
4. When the Discreet Growth Factor is above 2.570, the limit 

cycles break down and the population grows in a non-
repeating pattern (chaos) 

rd = 2.7 



Discrete Population Growth – Logistic 
Models 

• Chaos vs Stochasticity rd = 2.7 
 
N0 = 100 
N0= 101 



Variation in Carrying Capacity 

• Environmental Variation may cause carrying 
capacity to change over time 

• Variation could be: 

1. Random 

2. Cyclic 



Variation in Carrying Capacity 

• Random Variation in Carrying Capacity (K) 
• If r is not variable, but carrying capacity changes over time, 

result is complex growth patterns 

• When a population is above the carrying capacity, it 
declines at a faster rate than it will increase if it is at a 
corresponding similar point below the carrying capacity. 

• If the carrying capacity is described by a mean (𝑲 ) with an 

associated variance (𝝈𝑲
𝟐 ), a rough approximation of the 

mean population size will be: 

• 𝑁 = 𝐾 −
𝜎𝐾
2

2
  



Variation in Carrying Capacity 

• Random Variation in Carrying Capacity (K) 

 • The more variable 
the environment, the 
smaller the average 
population size.  

  
• If the intrinsic rate of 

increase (r) is large, 
the population 
closely  tracks 
changes in carrying 
capacity.   

• if the small intrinsic rate of increase (r) is small, the population do not 
fluctuate much in size as carrying capacity varies, but the population size 
(N) will tend to be overall somewhat smaller than a population that has 
a rapid intrinsic growth rate.  



Variation in Carrying Capacity 

• Periodic (cyclic) variation in Carrying Capacity 

• e.g. seasonal variation in resources 

 

• 𝐾𝑡 = 𝑘0 + 𝑘1cos (
2𝜋𝑡

𝑐
) 

• 𝐾𝑡 = carrying capacity at time t 

• 𝑘0 = is mean carrying capacity 

• 𝑘1 = the amplitude of the cycle 

• 𝑐 = the length of the cycle 

 

 



Variation in Carrying Capacity 

• Periodic (cyclic) variation in Carrying Capacity 
• length of the cycle acts as a time lag, so the behavior of the 

model depends on the factor rc (as it did previously with rτ) 

 



Variation in Carrying Capacity 

• if rc is large (>>1.0), then the 
population tends to track the 
fluctuations in the environment: 

• 𝑵𝒕 ≈ 𝒌𝟎 + 𝒌𝟏𝐜𝐨𝐬 (
𝟐𝝅𝒕

𝒄
) 

 

 

• If rc is very small (<<1.0), then the 
population tends to average out 
the fluctuations and persist at a 
level slightly below carrying 
capacity  

• 𝑵 ≈  𝒌𝟎
𝟐 − 𝒌𝒕

𝟐 

 

 


