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Exponential growth 

Deterministic model 

# Model 6, Exponential growth 
t <- seq(1,5,0.01) 
tn <- seq(1,length(t),1) 
Nt <- rep(NA,length(t)) 
r <- log(2.8) 
N0 <- 12 
Nt[tn] <- N0*exp(r*t) 

𝑁𝑡 = 𝑁0𝑒𝑟𝑡 



Exponential growth 

Dennis et al. 1991 



Exponential growth 

# Model 6, Exponential growth 
t <- seq(1,5,0.01) 
tn <- seq(1,length(t),1) 
Nt <- rep(NA,length(t)) 
 
r <- log(2.8) 
N0 <- 12 
Nt[tn] <- N0*exp(r*t) 

𝑁𝑡 = 𝑁0𝑒𝑟𝑡 



Stochastic population growth 

Normal distribution 

# Model 8, stochastic Exponential growth 
t <- seq(1,5,0.1) 
tn <- seq(1,length(t),1) 
Nt1 <- rep(NA,length(t)) 
Nt2 <- rep(NA,length(t)) 
 
r1 <- rnorm(length(t),log(2),0.04) 
r2 <- rnorm(length(t),log(2),0.04) 
N0 <- 12 
Nt1[tn] <- N0*exp(r1[tn]*t) 
Nt2[tn] <- N0*exp(r2[tn]*t) 



Stochastic population growth 

# Model 8, stochastic Exponential growth 
t <- seq(1,5,0.1) 
tn <- seq(1,length(t),1) 
Nt1 <- rep(NA,length(t)) 
Nt2 <- rep(NA,length(t)) 
 
r1 <- rnorm(length(t),log(2),0.04) 
r2 <- rnorm(length(t),log(2),0.04) 
N0 <- 12 
Nt1[tn] <- N0*exp(r1[tn]*t) 
Nt2[tn] <- N0*exp(r2[tn]*t) 

Random 



Why include stochasticity? 

𝑁𝑡 = 𝑁0𝑒𝑟𝑡 



Density dependence 



Objectives 

• Density dependence 

• Carrying capacity 

• Negative and positive density dependence 

• Time lags 

• Cyclic populations 

• Oscillations, dampening oscillations 



Density dependence 

No resource limitation 

𝑑𝑁

𝑑𝑡
= 𝑏 − 𝑑 𝑁 

𝑁𝑡+1 = 𝑁𝑡 + 𝑏 ∙ 𝑁𝑡 − 𝑚 ∙ 𝑁𝑡 



Density dependence births 

𝑑𝑁

𝑑𝑡
= 𝑏 − 𝑑 𝑁 

𝒃′ = 𝒃 − 𝒂𝑵 
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Density dependent births 

Musculium securis 
Fingernail clams 
Bergon, Harper and Townsend 1996 



Density dependent mortality 



Density dependent mortality 

Population Size (N) 
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Death rate (d’) 

𝒅′ = 𝒅 + 𝒄𝑵 

𝑑𝑁

𝑑𝑡
= 𝑏 − 𝑑 𝑁 



Logistic Population Growth 

• Density-dependent Birth (b’) & Death Rates 
(d’) 

 

 

𝒃′ = 𝒃 − 𝒂𝑵 

𝒅′ = 𝒅 + 𝒄𝑵 

• a & c are slope constants that dictate the strength of 
density-dependence of birth or death rates with 
increasing population size 

• b instantaneous per capita birth rate when resources are 
unlimited 

• d instantaneous per capita mortality rate when resources 
are unlimited 



Carrying capacity (K) 

N <- seq(0,100,1) 
t <- seq(1,20,1) 
N0 <- 1 
b <- 0.8 
d <- 0.2 
 
b.alpha <- b/max(N) 
d.alpha <- d/max(N) 
b.prime <- b - b.alpha*N 
d.prime <- d + d.alpha*N 
K <- (b - d)/(b.alpha + d.alpha) 
bd.intersect <- b - b.alpha*K 

b0 

d0 

Death rate (d’) 

Birth rate (b’) 

K 



Carrying capacity 

N <- seq(0,400,1) 
t <- seq(1,40,1) 
N0 <- 1 
b <- 0.8 
d <- 0.2 
 
b.alpha <- b/100 
d.alpha <- d/100 
b.prime <- b - b.alpha*N 
d.prime <- d + d.alpha*N 
K <- (b - d)/(b.alpha + d.alpha) 
 
r <- (b-d) 
Nt <- K/(1+((K-N0)/N0)*exp(-r*t)) 

b0 

d0 

Death rate (d’) 

Birth rate (b’) 

K 



Carrying capacity (K) 

• Density dependent mortality 
• Density independent births 
• K = 300 (previously 60)  

Death rate (d’) 

Birth rate (b’) 

K 

N <- seq(0,400,1) 
t <- seq(1,20,1) 
N0 <- 1 
b <- 0.8 
d <- 0.2 
 
b.alpha <- 0 
d.alpha <- d/100  
b.prime <- b - b.alpha*N 
d.prime <- d + d.alpha*N 
K <- (b - d)/(b.alpha + d.alpha) 
bd.intersect <- b - b.alpha*K 



Carrying capacity (K) 

N <- seq(0,400,1) 
t <- seq(1,20,1) 
N0 <- 1 
b <- 0.8 
d <- 0.2 
 
b.alpha <- b/100 
d.alpha <- 0  
b.prime <- b - b.alpha*N 
d.prime <- d + d.alpha*N 
K <- (b - d)/(b.alpha + d.alpha) 
bd.intersect <- b - b.alpha*K 

Death rate (d’) 

Birth rate (b’) 

K • Density independent mortality 
• Density dependent births 
• K = 300 (previously 60)  



Logistic Growth Models 

• Integrating Carrying Capacity (K) into growth models 

𝒅𝑵

𝒅𝒕
= 𝒃′ − 𝒅′ 𝑵  

𝒅𝑵

𝒅𝒕
= 𝒃 − 𝒂𝑵 − 𝒅 + 𝒄𝑵  𝑵  

𝒃′ = 𝒃 − 𝒂𝑵 

𝒅′ = 𝒅 + 𝒄𝑵 

𝒅𝑵

𝒅𝒕
= 𝒃 − 𝒅 𝑵 



Logistic Growth Models 

𝒅𝑵

𝒅𝒕
= 𝒃 − 𝒂𝑵 − 𝒅 + 𝒄𝑵  𝑵  

𝒅𝑵

𝒅𝒕
= 𝒃 − 𝒅 − 𝒂 + 𝒄 𝑵  𝑵  

Density dependent constants 



Logistic Growth Models 

𝑑𝑁

𝑑𝑡
= 𝑏 − 𝑑 − 𝑎 + 𝑐 𝑁  𝑁  

𝑑𝑁

𝑑𝑡
=

𝑏 − 𝑑

𝑏 − 𝑑
𝑏 − 𝑑 − 𝑎 + 𝑐 𝑁  𝑁  

𝑑𝑁

𝑑𝑡
= 𝑏 − 𝑑

𝑏 − 𝑑

𝑏 − 𝑑
−

𝑎 + 𝑐

𝑏 − 𝑑
𝑁 𝑁 

𝑑𝑁

𝑑𝑡
= 𝑟 1 −

𝑎 + 𝑐

𝑏 − 𝑑
𝑁 𝑁 define K as 

𝒃−𝒅

𝒂+𝒄
 



Logistic Growth Models 
𝑑𝑁

𝑑𝑡
= 𝑟 1 −

𝑎 + 𝑐

𝑏 − 𝑑
𝑁 𝑁 

define K as 
𝑏−𝑑

𝑎+𝑐
 

𝑑𝑁

𝑑𝑡
= 𝑟 1 −

1

𝐾
𝑁 𝑁 

𝒅𝑵

𝒅𝒕
= 𝒓𝑵 𝟏 −

𝑵

𝑲
 

Exponential Density dependent 



Unused Portion of K 

• Unused portion of the carrying capacity 

 

 

 
• When population size is far below carrying capacity, there is a large 

unused portion and population growth is high 
• K = 1000, N = 5,  0.995 

• When population size approaches carrying capacity, there is little 
unused portion remaining, and population growth rate declines 
• K = 1000, N = 990, 0.01 

𝒅𝑵

𝒅𝒕
= 𝒓𝑵 𝟏 −

𝑵

𝑲
 



Density independent vs dependent 

N <- seq(0,100,1) 
t <- seq(1,20,1) 
N0 <- 1 
b <- 0.8 
d <- 0.2 
 
b.alpha <- b/100 
d.alpha <- d/100 
b.prime <- b - b.alpha*N 
d.prime <- d + d.alpha*N 
K <- (b - d)/(b.alpha + d.alpha) 
bd.intersect <- b - b.alpha*K 
 
r <- (b-d) 
Ntexp <- N0*exp(r*t) 
Nt <- K/(1+((K-N0)/N0)*exp(-r*t)) 

r = 0.6 
K = 60 



Logistic population growth 

N <- seq(0,400,1) 
t <- seq(1,40,1) 
N0 <- 1 
r <- 0.2 
K <- 60 
K2 <- 30 
 
Ntexp <- N0*exp(r*t) 
Nt <- K/(1+((K-N0)/N0)*exp(-r*t)) 
Nt2 <- K2/(1+((K2-N0)/N0)*exp(-r*t)) 

r = 0.2 

K = 30 

K = 60 



Logistic population growth 

N <- seq(0,400,1) 
t <- seq(1,40,1) 
N0 <- 1 
r <- 0.2 
r2 <- 0.3 
K <- 60 
K2 <- 60 
 
Ntexp <- N0*exp(r*t) 
Nt <- K/(1+((K-N0)/N0)*exp(-r*t)) 
Nt2 <- K2/(1+((K2-N0)/N0)*exp(-r2*t)) 

r = 0.2 
K = 60 

r = 0.2 r = 0.3 



Logistic model integrated 

𝑵𝒕 =
𝑲

𝟏 + 𝑲 − 𝑵𝟎 /𝑵𝟎 𝒆−𝒓𝒕
 

𝑵𝒕 = 𝑵𝟎𝒆𝒓𝒕 

𝒅𝑵

𝒅𝒕
= 𝒓𝑵 

𝒅𝑵

𝒅𝒕
= 𝒓𝑵 𝟏 −

𝑵

𝑲
 



K = 60 
 
r = 0.2, N0 = 100 
 
r = 0.3, N0 = 80 
r = 0.2, N0 = 80 
 
r = 0.3, N0 = 1 
r = 0.2, N0 = 1 

𝑵𝒕 =
𝑲

𝟏 + 𝑲 − 𝑵𝟎 /𝑵𝟎 𝒆−𝒓𝒕
 

Logistic population growth 



Logistic population growth 

Why would a population ever exceed K? 



K is an Equilibrium Point 
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What does K represent biologically? 



Assumption of Linear density-
dependence 

Population Size (N) 
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Logistic population growth 

N <- seq(0,100,1) 
t <- seq(1,20,0.1) 
N0 <- 1 
K <- 60 
r <- 0.6 
 
Nt <- K/(1+((K-N0)/N0)*exp(-r*t)) 

At what point is 
the population 
growing fastest? 



Population growth rate 

N <- seq(0,100,1) 
N0 <- 1 
K <- 60 
r <- 0.6 
r1 <- 0.4 
 
dndt <- r*(1-(1/K)*N)*N 
dndt1 <- r1*(1-(1/K)*N)*N 
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r <- 0.6 

r <- 0.6 



Model Assumptions 

• Same Assumptions as Exponential Model 
1. No time lags 

2. No migration 

3. No Genetic Variation 

4. No Age Structure 

 

• Additional 2 Assumptions 
1. Constant carry capacity – this means that resource availability does not 

vary with time and K is constant.  

2. Linear density dependence – this assumes that each individual added to 
the population causes an incremental decrease in the per capita rate of 
population growth [(1/N)(dN/dt)].  



Per capita rate of Population Growth  

Population Size (N) 
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𝑲 

𝒓 

Logistic Growth Model 

Exponential Growth Model 



Per capita population growth 

Evidence of intra-specific competition for food in a pelagic seabird 

S. Lewis, T. N. Sherratt, K. C. Hamer and S. Wanless 

Nature 412, 816-819(23 August 2001) 

doi:10.1038/35090566 

http://www.nature.com/nature/journal/v412/n6849/full/412816a0.html
http://www.nature.com/nature/journal/v412/n6849/full/412816a0.html
http://www.nature.com/nature/journal/v412/n6849/full/412816a0.html


Time Lags 

• In a continuously growing population, adding new 
individuals into the population causes a continuous 
decrease in the per capita rate of population 
growth [(1/N)(dN/dt)] 

 

• However, in many populations there are time lags 
(τ) in response to changes in population size 

 

 What could cause these time lags? 



Time Lags 

• The change in population size at time t is now controlled by 
the population size at some point (t-τ) in the past (Nt-τ) 

 
• build this into a delay differential equation into the logistic 

model as: 

•
𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁𝑡−𝜏

𝐾
 

 

• Two things will affect this equation. 

1.The length of the time lag (τ) 

2.The response time of the population – this is inversely related 
to the intrinsic rate of increase (i.e. 1/r).  



Time Lags 

• The ratio of the time lag to the response time 
𝝉

𝟏/𝒓
, 

(which is simply rτ) controls population growth.  

 
• If rτ is small (between 0 to 0.368) 

• the population increases smoothly to a carrying capacity 

• If rτ is moderate (0.368 to 1.570) 
• the population first overshoots then undershoots carrying 

capacity, followed by dampening oscillation to reach carrying 
capacity over time. 

• If rτ is large (>1.570) 
• the population goes into a stable limit cycle of oscillations 

above and below carrying capacity that go on indefinitely.  

 



Cyclic Populations 
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Time Lags 
𝑑𝑁

𝑑𝑡
= 𝑟𝑁 1 −

𝑁𝑡−𝜏

𝐾
 

𝝉

𝟏/𝒓
, = rτ  



Logistic population growth 

© 2012 Nature Education 

http://www.nature.com/scitable


E McCauley et al. Nature 455, 1240-1243 (2008) doi:10.1038/nature07220 

Egg density dynamics during cycles. 

Daphnia pulex 


