
BIOL 410 Population and 
Community Ecology 

Density-independent growth 



Spatial scales 

• Grain 

• Extent 

• Relevant ecological unit 

• Relevant ecological processes 

1 km2 
1 ha 

10 m2 
100 km2 

10000 km2 



What is scale in a population ecology 
context? 

• Ecological scale 

– Related to: 

• The structures and processes that define the 
phenomenon under study 

• The sampling method 

• The statistical analysis 

 

– Grain and extent need to be defined for all studies 



Importance of scale 

• What scale should a population be assessed at? 

• At what scale do the processes that influence the 
population operate on? 

 

• As the scale changes, the controls on pattern and 
process change 
– E.g. relationship between climate and vegetation 

• As the scale changes, the system may switch 
between closed and open. 



What factors will influence the extent 
and grain of the population model? 



Scale of spatial heterogeneity 

Homogeneous? Heterogeneous? 

Abiotic 
• Elevation 
• Aspect 
• Slope 
• Soil depth 

Grain size 
• Small enough to be 
homogeneous within cell 
• Large enough to minimize # 
of cells. 

Biotic 
• Organism 
• Scale of 
interactions 



Relevant ecological unit? 

Spatial scale 

Cell 

Branch 
(organism component) 

Tree 

Stand 
(population / community) 

Region 



Spatial scale 

• Relevant processes? 

– Competition? 

– Predation? 

– Dispersal? 



Scale and ecology 

• Key points when considering scaling issues: 

 
1. Description of phenomenon can be conditional on 

the scale of observation and resulting analysis 

2. Relating patterns to processes is dependent on the 
appropriate choice of scale 

3. Scale might be a continuous process without 
discrete boarders or breaks 

4. Identifying variability between units or process can 
be used to identify appropriate scales 
• Domain: sharp transition from dominance of one set of 

factors to dominance by other sets 



Scale of observation can influence 
your ecological conclusions 

• Pattern 

• Process 



Scale of observation can influence 
your ecological conclusions 

• Estimation of population mean 

• Estimation of population variance 

• Characterization of spatial or 
temporal autocorrelation 

• Process rate 

• Gradients, functional forms 



Scale of study in population and 
community ecology 

• Individual? 

• Population? 

• Geographic range? 

• Species range? 

 

 

 

Question, objective dependent 

 



Quantitative methods for 
identifying scale 

• Are spatially close points more similar? 
 

• Variance plotted against distance classes 
 

• Autocorrelation value plotted against distance classes 

A       B      C 



Correlogram 

• Distance at which correlogram 
lines cross the neutral value 
indicates “patch size” or 
“spatial range of the pattern” 

> 0 positive 

< 1 positive 



Population growth 
density independent 



Key concepts 

• Density independence 

• Birth and death rates 

• Population growth rate 

• Exponential population growth 

• Closed vs. Open populations 

• Discrete vs. overlapping generations 

• Discrete vs. continuous growth 

• Deterministic vs. stochastic model 

 



Most basic population 

N: number of individuals in population 

t: time (discrete unit) 

B: number of births time interval 

D: number of deaths per time interval 

𝑁𝑡+1 = 𝑁𝑡 + 𝐵 − 𝐷 



Non-overlapping generations 



Discrete population growth 



Most basic population 

• Discrete time steps 
• Closed population 
• No spatial structure 
• No demographic structure 

 
How will the population 
density change? 
• Nt =12, B = 5, D = 3 

 
 
 
 

𝑁𝑡+1 = 𝑁𝑡 + 𝐵 − 𝐷 

# State variables (abiotic) 
years <- 2011:2015 
Nt <- rep(NA,length(years)) 
 
# State variables (biological) 
N <- c(1,3,8,27,81) 
B <- 5 # births per year 
D <- 3 # deaths per year 
 
# Model 1 
N <- 12 
for(year in years) { 

t <- match(year,years) 
Nt[t] <- N + B - D 
N <- Nt[t] 

} 
plot(years,Nt) 



b: birth rate (births per 
individual per time step) 

 

m: mortality rate (death rate 
per individual per time step) 

 

Rate coefficient, not fixed 
parameter 

# Model 2 
N <- 12 
# Rate coefficient (parameter) 
b <- 2 # birth rate per individual 
m <- 0.2 # death rate per individual 
 
for(year in years){ 
  t     <- match(year,years) 
  Nt[t] <- N + N*b - N*m 
  N     <- Nt[t] 
} 
plot(years,Nt) 

𝑁𝑡+1 = 𝑁𝑡 + 𝑏 ∙ 𝑁𝑡 − 𝑚 ∙ 𝑁𝑡 



# Model 2 
N <- 12 
# Rate coefficient (parameter) 
b <- 2 # birth rate per individual 
m <- 0.2 # death rate per individual 
 
for(year in years){ 
  t     <- match(year,years) 
  Nt[t] <- N + N*b - N*m 
  N     <- Nt[t] 
} 
plot(years,Nt) 

Geometric population growth 

𝑁𝑡+1 = 𝑁𝑡 + 𝑏 ∙ 𝑁𝑡 − 𝑚 ∙ 𝑁𝑡 



# Model 3 
# Rate coefficient (parameter) 
b <- 2   # birth rate per individual 
m <- 0.2 # death rate per individual 
rd <- b - m#  discrete population growth factor 
N <- 12  
for(year in years){ 
  t <- match(year,years) 
  Nt[t] <- N + N*rd 
  N <- Nt[t] 
} 

𝑟𝑑 = 𝑏 − 𝑚 

𝑁𝑡+1 = 𝑁𝑡 + 𝑁𝑡 ∙ 𝑟𝑑 

𝑁𝑡+1 = 𝑁𝑡 + 𝑁𝑡 ∙ (𝑏 − 𝑚) 

rd: discrete population 
growth factor 

𝑁𝑡+1 = 𝑁𝑡 + 𝑏 ∙ 𝑁𝑡 − 𝑚 ∙ 𝑁𝑡 



𝑁𝑡+1 = 𝑁𝑡 + 𝑁𝑡 ∙ 𝑟𝑑 

What happens when rd is: 
> 0 
 
= 0 
 
< 0 



# Model 4 
# Finite rate of increase 
b <- 2# birth rate per individual 
m <- 0.2# death rate per individual 
rd <- b - m# per individual population growth rate 
lambda <- 1 + rd# Finite rate of per individual 
population increase 
N <- 12  
for(year in years){ 
  t <- match(year,years) 
  Nt[t] <- lambda*N 
  N <- Nt[t] 
} 

𝑁𝑡+1 = 𝑁𝑡 + 𝑁𝑡 ∙ 𝑟𝑑 

𝑁𝑡+1 = 𝑁𝑡 ∙ (1 + 𝑟𝑑) 

𝑁𝑡+1 = 𝑁𝑡 ∙ 𝜆 

λ : the finite 
rate of increase 

𝜆 =  (1 + 𝑟𝑑) 



# Model 4 
# Finite rate of increase 
b <- 2# birth rate per individual 
m <- 0.2# death rate per individual 
rd <- b - m# per individual population growth rate 
lambda <- 1 + rd# Finite rate of per individual 
population increase 
N <- 12  
for(year in years){ 
  t <- match(year,years) 
  Nt[t] <- lambda*N 
  N <- Nt[t] 
} 

𝑁𝑡+1 = 𝑁𝑡 ∙ 𝜆 



Discrete population growth 
Geometric population growth 

𝑁𝑡+1 = 𝑁𝑡 ∙ 𝜆 

𝜆 
• Always a positive number 
• Represents the proportional 

change in a population from one 
time unit to the next 

• As a ratio it is a dimensionless 
number 



Projected population size at any time 

𝑁𝑡+1 = 𝑁𝑡 ∙ 𝜆 

𝑁𝑡+2 = 𝑁𝑡 ∙ 𝜆 ∙ 𝜆 

𝑁𝑡+2 = 𝑁𝑡 ∙ 𝜆2 

𝑁𝑡 = 𝑁0 ∙ 𝜆𝑡 

Recursion equation 



𝑁𝑡 = 𝑁0 ∙ 𝜆𝑡 

# Model 5 
# Finite rate of increase 
b <- 2   # birth rate per individual 
d <- 0.2 # death rate per individual 
R <- b - d# per individual population growth rate 
lambda <- 1 + R # Finite rate of increase 
N0 <- 12  
t <- c(1:5) 
Nt[t] <- (lambda^t)*N0 

Discrete 
population 

growth 



Discrete population growth 

𝑁𝑡 = 𝑁0 ∙ 𝜆𝑡 

Assumptions 

• Population is closed (No I or E) 

• No genetic structure 

• No age or size structure 

• Constant b and d (λ constant) 
– Unlimited space, food, resources 

– b and m resource independent 

– b and m density independent 

 



𝑁𝑡 = 𝑁0 ∙ 𝜆𝑡 

How do populations grow with different λ? 
λ = 2.8 
λ = 1.8 
λ = 3.0 
λ = 0.7 

 



𝑁𝑡 = 𝑁0 ∙ 𝜆𝑡 

λ > 1 
 

λ = 1 
 

0 < λ < 1 



Continuous population growth 

𝑁𝑡 = 𝑁0 ∙ 𝜆𝑡 

Very small time step 
∆t      ∆N    

𝑑𝑁

𝑑𝑡
 Population growth 



Continuous population growth 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 

b: instantaneous birth rate 
d: instantaneous death rate 

𝑑𝑁

𝑑𝑡
= 𝑏 − 𝑑 𝑁 

r: 
Instantaneous rate of increase 
Intrinsic rate of increase 

What does r > 0, r=0, r<0 mean? 



Continuous population growth 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 

Integrated to: 

𝑁𝑡 = 𝑁0𝑒𝑟𝑡 

Exponential population growth 



Exponential growth 

# Model 6, Exponential growth 
t <- seq(1,5,0.01) 
tn <- seq(1,length(t),1) 
Nt <- rep(NA,length(t)) 
r <- log(2.8) 
N0 <- 12 
Nt[tn] <- N0*exp(r*t) 

𝑁𝑡 = 𝑁0𝑒𝑟𝑡 



Exponential growth 

# Model 6b, Exponential population (overlap of 
generations, constant growth) 
# Finite rate of increase 
t <- c(1:5) 
Nt <- rep(NA,length(t)) 
b <- 2    # birth rate per individual 
d <- 0.2  # death rate per individual 
R <- b - d# per individual population growth rate 
lambda <- 1 + R   # Finite rate of increase 
r <- log(lambda)  # Intrinsic growth rate 
N0 <- 12  
 
Nt[t] <- N0*exp(r*t) 

𝑁𝑡 = 𝑁0𝑒𝑟𝑡 

𝑟 = log (𝜆) 

NOTE: although they are mathematically related, the geometric and exponential 
population growth models are based on different assumption 



Exponential growth 

# Model 7, Exponential growth 
t <- seq(1,5,0.01) 
tn <- seq(1,length(t),1) 
Nt1 <- rep(NA,length(t)) 
Nt2 <- rep(NA,length(t)) 
Nt3 <- rep(NA,length(t)) 
Nt4 <- rep(NA,length(t)) 
r1 <- 0.5 
r2 <- 0.2 
r3 <- 0 
r4 <- -0.2 
N0 <- 12 
Nt1[tn] <- N0*exp(r1*t) 
Nt2[tn] <- N0*exp(r2*t) 
Nt3[tn] <- N0*exp(r3*t) 
Nt4[tn] <- N0*exp(r4*t) 

r = 0.5 
r = 0.2 
r = 0 
r = -0.2 



Population doubling time 

𝑁𝑡 = 𝑁0𝑒𝑟𝑡 

𝑡𝑑𝑜𝑢𝑏𝑙𝑒 =  
ln (2)

𝑟
 

r = 0.4 
tdouble = 1.732868 



Examples of exponential 
population growth? 


