BIOL 410 Population and Community Ecology

Neutral theory and PVA

Niche vs. Neutral

- How ecologically different are species?
- How important are those differences for determining biodiversity?
- Neutral theory
 - Species that are trophically similar are equivalent (i.e. the same fitness)
- Niche perspective
 - A species occupies a unique niche
 - i.e. resource acquisition trade-offs
 - It's fitness in an community depends on environmental conditions and species interactions matching its niche requirements
 - Composition of ecological communities reflects available niche space
 - i.e. niche differences maintain biodiversity

NONOGRAPHS IN POPULATION BIOLOGY . 32

Neutral theory

- Regional species pool
 - Species are equivalent
 - within groups of similarly functioning species (trophically similar)
 - i.e. tree not equivalent to a mosquito
 - Random death leads to "opening" in community
 - Random dispersal of individuals from species pool into opening
 - Long term: ecological drift, species abundance changes randomly over time

Niche vs. Neutral

- Reinvigoration of niche theory
- Current thought
 - Species are different, and niche space influences community composition
 - "Random" processes can be important in determining community composition and structure
 - mortality, dispersal
 - What is the relative importance of niche dynamics vs. stochastic processes?

Population and community ecology

- Conservation?
- Management? (resource, ecosystem)
 - Population management
 - Disease control
 - Impact assessment
- Exploitation?

• Population viability analysis (PVA)

Great Artesian Basin

- Covers ~ 22% Australia (1.76 million square km)
- Recharged from rainfall and stream flow
- Artesian springs on fringes of basin

What is the appropriate scale of ecological evaluation?

- Metapopulations
 - Patches of habitat embedded in a landscape that is unsuitable
- Defined by two processes

- Patch colonization (λ)
- Patch extinction (μ)

Patch extinction (μ_i)

dependent on patch area

 $\mu_i = m/A_i^x$

m = minimum patch area that will support a population (set at 1m)

A_i = wetland area of spring

x set to < 1

- extinction rate decreases less than linearly with increased area
- (x > 0.1, x < 0.5)

Patch colonization (λ_i)

dependent on state of system

Colonization between patches

$$p_{i,j} = e^{-\alpha d}$$

d = distance between patches

 α = rate at which colonization declines with distance

O_i = patch occupancy (0,1)

$$\lambda_j = 1 - \prod_{i=1, i \neq j}^n (1 - p_{i,j}) 0_i$$

Patch extinction (μ_i) $\mu_i = m/A_i^x$ Patch colonization (λ_i) $p_{i,j} = e^{-\alpha d}$

Parameter uncertainty (x = ?, α = ?)

How will metapopulations respond to decreased pressure?

- Simulate metapopulation over 50 years
- Test different levels of decreased pressure (% decrease)
- Run model 10,000 time with each of 100 parameter combinations
- Estimate probability that # occupied springs decreases to 1 or less over a 50 year period (quasi-extinction risk)

Current level of parameter uncertainty precludes clear statement of risk for metapopulations