BIOL 410 Population and Community Ecology

Community composition

Ecological communities

Species richness (number of species)

Questions of ecological communities

- For a given community, how many species are present and what are their relative abundances?
- How many species are rare?
- How many species are common?
- How can the species in the community be grouped
- What type of interactions occur between the species groups (guilds)?

Community structure

- Diversity
 - Does a community contain a divers range of species or few
- Relative Abundance
 - What can we learn from the relative abundance of species within a community?
- Dominance
 - Is a community dominated (numerically of functionally) by some species?
- Trophic structure
 - How is the community organized and how does energy (food) flow through it?

Species diversity

- What determines the number and kinds of species that occur in a particular place?
- Why do number and kinds of species vary from place to place?

Species diversity

- Species diversity consists of two components
 - 1. Species Richness
 - The total number of species in an area
 - Simple summation

- 2. Species Evenness
 - How evenly the species are represented in the area
 - E.g. do most of the individuals belong to one species?

Species richness

Just count the number of species

- Detection bias between species?
 - Within habitat types?
 - Between habitat types?

- Sample effort (size) bias?

Species richness

Relationship between sampling area and bird species richness in North America

Species richness

Margalef's index

$$I_{Margalef} = \frac{S-1}{\ln(N)}$$

S: total number of species in area sampled N: total number of individuals observed

Menhinick's index

$$I_{Menhinick} = \frac{S}{\sqrt{N}}$$

- Attempts to estimate species richness independent of sample size
- Index will be independent of the number of individuals in the sample only if the relationship between S (or S-1) and In(N) or sqrt(N) is linear
 - This is seldom the case

Species Richness

Margalef's and Menhinick's index

Interpretation

– The higher the index the greater the richness

- S = 6 and N = 50
 - Margalef index = 1.28, Mehinick index = 0.85
- S = 6 and N = 20

– Margalef index = 1.67, Mehinick index = 1.34

Species diversity

species diversity = f(species richness, species evenness)

• Many calculations use species proportions (not absolute numbers)

$$p_i = x_i / \sum_{i=1}^{S} x_i$$

- X is observed abundance of species I (numbers, biomass, cover etc.)
- S is the number of species

Species richness

• P_i is the proportion of individuals belonging to species I

$$D_0 = \sum_{i}^{s} p_i^{0}$$

Simpson's Index

- Edward Simpson, British Statistician
 - Developed index to measure the degree of concentration when individuals are classified by types (i.e. a measure of the degree of dominance)
 - Asked: "if I draw two individuals at random from this community, what is the probability that they will belong to the same species?"
 - Probability of drawing species i is p_i
 - Probability of drawing species I twice is p_i²
 - Sum of the value for all species is the Simpson's index of dominance

$$D_{Simpson} = \sum p_i^2$$

Simpson's index of dominance

- In small samples, the probability of drawing species i the second time is not the same as the first since there are now fewer individuals
- In small populations the index is:

$$D_{Simpson} = \frac{\sum n_i(n_i - 1)}{N(N - 1)}$$

- n total number of organisms of a particular species
- N total number of organisms of all species

Simpson's index of diversity

• Species diversity is given as the counter to dominance and calculated as either:

$$I_{CompSimp} = 1 - D_{Simpson}$$

Gini-Simpson index

 $I_{InvSimp} = 1/D_{Simpson}$

- Range 0 to 1
- The higher the index the greater the diversity

Simpson's Index

р –	<u>∑ n(n - 1)</u>
D =	N(N - 1)

 $\sum n(n - 1) = 264$

r	ו	n(n - 1)
Species A	12	132
Species B	3	6
Species C	7	42
Species D	4	12
Species E	9	72
∑ n(n - 1)		264

N = total number of all individuals = 35

$$D = \frac{\sum n(n-1)}{N(N-1)}$$

$$D = \frac{264}{1190} = 0.22184$$

Shannon's index

- Measure of the entropy (disorder) of a sample
 - Measures the "information content" of a sample unit
 - Field of information theory
 - i.e. have a string of letters (r,e,f,r,f,f,e,a), and want to predict which letter will be next in the string
 - More letters = more difficult
 - More even the letters = more difficult
 - Degree of uncertainty associated with predicting the species of an individual picked at random from a community
 - i.e. if diversity is high, you have a poor chance of correctly predicting the species of the next randomly selected individual
 - Increased species number reduces chance of correctly predicting species
 - Decreased evenness reduces chance of correctly predicting species

Shannon's diversity index

- H or H' $H' = -\sum_{i}^{S} p_i \ln(p_i)$
 - s = number of species
 - p_i = proportion of individuals belonging to species I
 - Range usually between 1.5 and 3.5
 - Low value indicates low diversity
 - High information content
 - High value indicates high diversity
 - Large number of species
 - Even distribution of species

Shannon's diversity index

	Sp A	Sp B	p_{A}	p_{B}
Plot 1	99	1	0.99	0.01
Plot 2	50	50	0.50	0.50

$$H' = -\sum_{i=1}^{2} p_i \log p_i$$

For plot 1

 $H' = -1[0.99 \cdot \log(0.99) + 0.01 \cdot \log(0.01)] = 0.024$

For plot 2

$$H' = -1 \left[0.5 \cdot \log(0.5) + 0.5 \cdot \log(0.5) \right] = 0.301$$

Species evenness

- How equally abundant are each of the species?
- What is the structure of species relative abundance within a community?
- Can we compare how evenly distributed two communities are
- Rarely are all species equally abundant
 - Some are better competitors, more fecund than others
- Are communities with high species evenness
 - More resilient to disturbances?
 - Harder to invade by a new species?
 - High evenness is often viewed as a sign of ecosystem health

Shannon's index of evenness

- Calculated from the diversity index
- Value of H when all species are equally abundant (i.e. perfect evenness) is ln(S)

$$E_{Shannon} = \frac{H}{\ln(S)}$$

- When the proportions of all species are the same evenness is one
- Value increases as evenness decreases

Simpson's index of evenness

$$E_{Simpson} = \frac{I_{InvSimp}}{S}$$

S = number of species

$$I_{InvSimp} = 1/D_{Simpson}$$

Community diversity metrics

N.L. Lexerød, T. Eid/Forest Ecology and Management 222 (2006) 17-28

19

Table 1 Indices quantifying diameter diversity within stands

Index	Influenced by	Theoretical index value range	Reference
Margalef index, $D_{Mg} = (S-1)/\ln(BA)$	Range	[0, ∞]	Clifford and Stephenson (1975)
Shannon index, $H' = -\sum_{i=1}^{s} p_i \ln(p_i)$	Range	$[0, \ln(S)]$	Shannon (1948)
Gini coefficient, GC = $\frac{\sum_{j=1}^{n} (2j-n-1)ba_j}{\sum_{j=1}^{n} (2j-n-1)ba_j}$	Range	[0, 1]	Gini (1912)
Gini coefficient, GC = $\frac{\overline{j=1}}{\sum_{j=1}^{n} ba_j(n-1)}$			
Simpson index, $D_{Si} = 1 - \sum_{i=1}^{s} p_i^2$	Dominance	[0, 1]	Simpson (1949)
McIntosh index, $D_{\text{MI}} = \frac{BA - \sqrt{\sum_{i=1}^{s} ba_i^2}}{BA - \sqrt{BA}}$	Dominance	$[-\infty, \infty]$	McIntosh (1967)
McIntosh index, $D_{MI} = \frac{V_{i=1}}{BA - \sqrt{BA}}$			
Berger-Parker index, $D_{BP} = 1 - ba_{max}/BA$	Dominance	[0, 1]	Berger and Parker (1970)
Shannon evenness (E), $E_{\rm Sh} = H'/\ln(S)$	Evenness	[0, 1]	Pielou (1969)
McIntosh evenness (E), $E_{\rm MI} = \frac{BA - \sqrt{\sum_{i=1}^{s} ba_i^2}}{BA - BA / \sqrt{S}}$	Evenness	[0, 1]	Pielou (1969)

S, number of diameter classes; BA, basal area (m² ha⁻¹); ba_i, basal area in size class *i*; p_i , proportion of basal area in size class *i* (m² ha⁻¹); ba_j, basal area for tree with rank *j* (m² ha⁻¹); *j*, the rank of a tree in ascending order from 1, ..., *n*; *n*, total number of trees; ba_{max}, basal area in the size class with largest basal area (m² ha⁻¹).

Species and community diversity

- Estimates of species diversity are scale dependent
 - Species area curves
 - Habitat type differences?

Scales of diversity

- Alpha diversity
 - Within patch diversity
- Beta diversity
 - Between patch diversity
 - Rate of species change between two areas
 - Spatial (but calculation can also be applied to temporal changes)
- Gama diversity
 - Landscape level diversity

Scales of diversity

Andres Baselga 2015

- R.H. Whittaker (1960)
 - "the extent of change in community composition, or degree of community differentiation, in relation to a complex-gradient of environment, or a pattern of environments"
- Why is beta diversity important?
 - Biodiversity is not evenly distributed around the world
 - Quantifying the differences among biological communities is often a first step towards understanding how biodiversity is distributed

- Rate of change between two habitats
- Dissimilarity between habitats
 - Normally based on species presence-absence data
 - Dissimilarity indexes

Habitat	Spec. A	Spec. B	Spec. C	Spec. D
1	1	1	0	0
2	1	1	1	0
3	1	0	0	1
4	0	0	1	1
5	1	0	0	0

- Which habitats are most similar
- Which habitats are least similar

- Beta diversity can be quantified in a couple of ways
 - 1. Beta diversity defined as the ratio between gamma diversity and alpha diversity
 - Multiplicative beta diversity
 - $\beta = \gamma/\alpha \quad (\gamma = \alpha \beta)$
 - α is the mean α diversity across all sites

• Evaluating "difference" in biological communities

Similarity, dissimilarity

- a = Number of species in sample A and sample B (joint occurrences)
- b = Number of species in sample B but not in sample A
- c = Number of species in sample A but not in sample B
- d = Number of species absent in both samples (zero-zero matches)

Jacard's dissimilarity index

$$D_j = 1 - \frac{a}{a+b+c}$$

a = number of species common to both areasb = number of species unique to the first areac = number of species unique to the second area

$$D_{j12} = 1 - \frac{2}{2+2+2} = 0.33$$

Sorensen dissimilarity index

$$D_s = 1 - \frac{2a}{(2a+b+c)}$$

a = number of species common to both areas
b = number of species unique to the first area
c = number of species unique to the second area

• Evaluating "difference" in biological communities

A	Site A1 1 2 3 4 Site A2 1 2 5 6 Site A3 1 2 7 8	Spatial turnover	β =8/4=2
в	Site B1 1 2 3 4 5 6 7 8 Site B2 1 2 3	Nestedness	β =8/4=2
с	Site C1 1 2 3 4 5 6 Site C2 1 2 3 3 3 5 6 Site C2 1 2 3 3 7 8	Turnover & nestedness	β =8/4=2

$$D_s = 1 - \frac{2a}{(2a+b+c)}$$

A	Site A1 1 2 3 4 Site A2 1 2 5 6 Site A3 1 2 7 8	β =8/4=2	A1-A2 A1-A3 A2-A3	a	b 2.00 2.00 2.00	c 2.00 2.00 2.00	2.00 2.00 2.00	0.50	0 0.33 0 0.33 0 0.33
в	Site B1 1 2 3 4 5 6 7 8 Site B2 1 2 3 3 5 5 6 7 8 8 Site B3 1 <td>β=8/4=2</td> <td>A1-A2 A1-A3 A2-A3</td> <td>а</td> <td>b 3.00 1.00 1.00</td> <td>c 5.00 7.00 2.00</td> <td>0.00 0.00 0.00</td> <td>0.22</td> <td>5 0.38 2 0.13 0 0.33</td>	β =8/4=2	A1-A2 A1-A3 A2-A3	а	b 3.00 1.00 1.00	c 5.00 7.00 2.00	0.00 0.00 0.00	0.22	5 0.38 2 0.13 0 0.33
с	Site C1 1 2 3 4 5 6 Site C2 1 2 3 7 8 Site C3 1 7 8	β =8/4=2	A1-A2 A1-A3 A2-A3	a	b 3.00 1.00 1.00	c 3.00 5.00 1.00	0.00 2.00 1.00	0.22	7 0.50 2 0.13 0 0.33