BIOL 410 Population and Community Ecology

Community composition

Ecological communities

Species richness (number of species)

Questions of ecological communities

- For a given community, how many species are present and what are their relative abundances?
- How many species are rare?
- How many species are common?
- How can the species in the community be grouped
- What type of interactions occur between the species groups (guilds)?

Community structure

- Diversity
- Does a community contain a divers range of species or few
- Relative Abundance
- What can we learn from the relative abundance of species within a community?
- Dominance
- Is a community dominated (numerically of functionally) by some species?
- Trophic structure
- How is the community organized and how does energy (food) flow through it?

Species diversity

- What determines the number and kinds of species that occur in a particular place?
- Why do number and kinds of species vary from place to place?

Species diversity

- Species diversity consists of two components

1. Species Richness

- The total number of species in an area
- Simple summation

2. Species Evenness

- How evenly the species are represented in the area
- E.g. do most of the individuals belong to one species?

Species richness

Just count the number of species

- Detection bias between species?
- Within habitat types?
- Between habitat types?
- Sample effort (size) bias?

Species richness

Relationship between sampling area and bird species richness in North America

Species richness

Margalef's index

$$
I_{\text {Margalef }}=\frac{S-1}{\ln (N)} \quad \begin{aligned}
& \text { S: total number of species in area sampled } \\
& \mathrm{N}: \text { total number of individuals observed }
\end{aligned}
$$

Menhinick's index

$$
I_{\text {Menhinick }}=\frac{S}{\sqrt{N}}
$$

- Attempts to estimate species richness independent of sample size
- Index will be independent of the number of individuals in the sample only if the relationship between S (or $\operatorname{S-1}$) and $\ln (N)$ or sqrt (N) is linear
- This is seldom the case

Species Richness

Margalef's and Menhinick's index

- Interpretation
- The higher the index the greater the richness
- E.g.
- $S=6$ and $N=50$
- Margalef index $=1.28$, Mehinick index $=0.85$
- $S=6$ and $N=20$
- Margalef index $=1.67$, Mehinick index $=1.34$

Species diversity

species diversity $=f$ (species richness, species evenness)

- Many calculations use species proportions (not absolute numbers)

$$
p_{i}=x_{i} / \sum_{i=1}^{s} x_{i}
$$

- X is observed abundance of species I (numbers, biomass, cover etc.)
- S is the number of species
- P_{i} is the proportion of individuals belonging to species I

Species richness

$$
D_{0}=\sum_{i}^{s} p_{i}{ }^{0}
$$

Simpson's Index

- Edward Simpson, British Statistician
- Developed index to measure the degree of concentration when individuals are classified by types (i.e. a measure of the degree of dominance)
- Asked: "if I draw two individuals at random from this community, what is the probability that they will belong to the same species?"
- Probability of drawing species i is p_{i}
- Probability of drawing species I twice is $p_{i}{ }^{2}$
- Sum of the value for all species is the Simpson's index of dominance

$$
D_{\text {Simpson }}=\sum p_{i}^{2}
$$

Simpson's index of dominance

- In small samples, the probability of drawing species i the second time is not the same as the first since there are now fewer individuals
- In small populations the index is:

$$
D_{\text {Simpson }}=\frac{\sum n_{i}\left(n_{i}-1\right)}{N(N-1)}
$$

- n total number of organisms of a particular species
- N total number of organisms of all species

Simpson's index of diversity

- Species diversity is given as the counter to dominance and calculated as either:

$$
\begin{aligned}
I_{\text {CompSimp }} & =1-D_{\text {Simpson }} \quad \text { Gini-Simpson index } \\
I_{\text {InvSimp }} & =1 / D_{\text {Simpson }}
\end{aligned}
$$

- Range 0 to 1
- The higher the index the greater the diversity

Simpson’s Index

\[

\]

Shannon's index

- Measure of the entropy (disorder) of a sample
- Measures the "information content" of a sample unit
- Field of information theory
- i.e. have a string of letters (r,e,f,r,f,f,e,a), and want to predict which letter will be next in the string
- More letters = more difficult
- More even the letters = more difficult
- Degree of uncertainty associated with predicting the species of an individual picked at random from a community
- i.e. if diversity is high, you have a poor chance of correctly predicting the species of the next randomly selected individual
- Increased species number reduces chance of correctly predicting species
- Decreased evenness reduces chance of correctly predicting species

Shannon's diversity index

- H or H'

$$
H^{\prime}=-\sum_{i}^{S} p_{i} \ln \left(p_{i}\right)
$$

- $s=$ number of species
- $p_{i}=$ proportion of individuals belonging to species I
- Range usually between 1.5 and 3.5
- Low value indicates low diversity
- High information content
- High value indicates high diversity
- Large number of species
- Even distribution of species

Shannon's diversity index

	Sp A	Sp B	p_{A}	p_{B}
Plot 1	99	1	0.99	0.01
Plot 2	50	50	0.50	0.50

$$
H^{\prime}=-\sum_{i=1}^{2} p_{i} \log p_{i}
$$

$$
H^{\prime}=-1[0.99 \cdot \log (0.99)+0.01 \cdot \log (0.01)]=0.024
$$

For plot 2

$$
H^{\prime}=-1[0.5 \cdot \log (0.5)+0.5 \cdot \log (0.5)]=0.301
$$

Species evenness

- How equally abundant are each of the species?
- What is the structure of species relative abundance within a community?
- Can we compare how evenly distributed two communities are
- Rarely are all species equally abundant
- Some are better competitors, more fecund than others
- Are communities with high species evenness
- More resilient to disturbances?
- Harder to invade by a new species?
- High evenness is often viewed as a sign of ecosystem health

Shannon's index of evenness

- Calculated from the diversity index
- Value of H when all species are equally abundant (i.e. perfect evenness) is $\ln (S)$

$$
E_{\text {Shannon }}=\frac{H}{\ln (S)}
$$

- When the proportions of all species are the same evenness is one
- Value increases as evenness decreases

Simpson's index of evenness

$$
E_{\text {Simpson }}=\frac{I_{\text {InvSimp }}}{S}
$$

S = number of species

$I_{\text {InvSimp }}=1 / D_{\text {Simpson }}$

Community diversity metrics

N.L. Lexerød, T. Eid/Forest Ecology and Management 222 (2006) 17-28

Table 1
Indices quantifying diameter diversity within stands

Index	Influenced by	Theoretical index value range	Reference
Margalef index, $D_{\mathrm{Mg}}=(S-1) / \ln (\mathrm{BA})$	Range	$[0, \infty]$	Clifford and Stephenson (1975)
Shannon index, $H^{\prime}=-\sum p_{i} \ln \left(p_{i}\right) \quad[0, \ln (S)]$			
$\sum_{i=1}^{n}(2 j-n-1) \mathrm{ba}_{j}$	Range	[0, 1]	Gini (1912)
Gini coefficient, GC $=\frac{\sum_{=1}^{n}}{\sum_{j=1}^{n} \mathrm{ba}_{j}(n-1)}$			
Simpson index, $D_{\mathrm{Si}}=1-\sum^{s} p_{i}^{2}$	Dominance	$[0,1]$	Simpson (1949)
McIntosh index, $D_{\mathrm{MI}}=\frac{\mathrm{BA}-\sqrt{\sum_{i=1}^{s} \mathrm{ba}_{i}^{2}}}{\mathrm{BA}-\sqrt{\mathrm{BA}}}$	Dominance	$[-\infty, \infty]$	McIntosh (1967)
Berger-Parker index, $D_{\mathrm{BP}}=1-\mathrm{ba}_{\max } / \mathrm{BA}$	Dominance	[0, 1]	Berger and Parker (1970)
Shannon evenness (E), $E_{\text {Sh }}=H^{\prime} / \ln (S)$	Evenness	[0, 1]	Pielou (1969)
McIntosh evenness $(E), E_{\mathrm{MI}}=\frac{\mathrm{BA}-\sqrt{\sum_{i=1}^{s} \mathrm{ba}_{i}^{2}}}{\mathrm{BA}-\mathrm{BA} / \sqrt{S}}$	Evenness	[0, 1]	Pielou (1969)

S, number of diameter classes; BA, basal area $\left(\mathrm{m}^{2} \mathrm{ha}^{-1}\right)$; ba ${ }_{i}$, basal area in size class $i ; p_{i}$, proportion of basal area in size class $i\left(\mathrm{~m}^{2}\right.$ ha $\left.{ }^{-1}\right)$; ba ${ }_{j}$, basal area for tree with rank $j\left(\mathrm{~m}^{2}\right.$ ha $\left.^{-1}\right) ; j$, the rank of a tree in ascending order from $1, \ldots, n ; n$, total number of trees; ba max , basal area in the size class with largest basal area (m^{2} ha ${ }^{-1}$).

Species and community diversity

- Estimates of species diversity are scale dependent
- Species area curves
- Habitat type differences?

Scales of diversity

- Alpha diversity
- Within patch diversity
- Beta diversity
- Between patch diversity
- Rate of species change between two areas
- Spatial (but calculation can also be applied to temporal changes)
- Gama diversity
- Landscape level diversity

Scales of diversity

Minimum differentiation

Maximum differentiation

Andres Baselga 2015

Beta diversity

- R.H. Whittaker (1960)
- "the extent of change in community composition, or degree of community differentiation, in relation to a complex-gradient of environment, or a pattern of environments"
- Why is beta diversity important?
- Biodiversity is not evenly distributed around the world
- Quantifying the differences among biological communities is often a first step towards understanding how biodiversity is distributed

Beta diversity

- Rate of change between two habitats
- Dissimilarity between habitats
- Normally based on species presence-absence data
- Dissimilarity indexes

Habitat	Spec. A	Spec. B	Spec. C	Spec. D
1	1	1	0	0
2	1	1	1	0
3	1	0	0	1
4	0	0	1	1
5	1	0	0	0

- Which habitats are most similar
- Which habitats are least similar

Beta diversity

- Beta diversity can be quantified in a couple of ways

1. Beta diversity defined as the ratio between gamma diversity and alpha diversity

- Multiplicative beta diversity
- $\beta=\gamma / \alpha \quad(\gamma=\alpha \beta)$
- α is the mean α diversity across all sites

Beta diversity

- Evaluating "difference" in biological communities

Similarity, dissimilarity

$a=$ Number of species in sample A and sample B (joint occurences)
$b=$ Number of species in sample B but not in sample A
$c=$ Number of species in sample A but not in sample B
d = Number of species absent in both samples (zero-zero matches)

Jacard's dissimilarity index

$$
D_{j}=1-\frac{a}{a+b+c}
$$

$\mathrm{a}=$ number of species common to both areas
$b=$ number of species unique to the first area
$c=$ number of species unique to the second area

$$
D_{j 12}=1-\frac{2}{2+2+2}=0.33
$$

Sorensen dissimilarity index

$$
D_{s}=1-\frac{2 a}{(2 a+b+c)}
$$

$a=$ number of species common to both areas
$b=$ number of species unique to the first area
$c=$ number of species unique to the second area

$$
D_{s 12}=1-\frac{2(2)}{(2(2)+2+2)}=0.5
$$

Beta diversity

- Evaluating "difference" in biological communities

$$
\beta=8 / 4=2
$$

$$
\beta=8 / 4=2
$$

Beta diversity

$$
D_{s}=1-\frac{2 a}{(2 a+b+c)}
$$

$$
\beta=8 / 4=2_{\substack{A 1-A 3 \\ A 2-A 3}}^{A 1-A 2}
$$

a

Sorenson Jacard		
2.00	0.50	0.33
2.00	0.50	0.33
2.00	0.50	0.33
	0.50	0.33

A1-A2
A1-A3
A2-A3

2.00	2.00
2.00	2.00
2.00	2.00

$$
7
$$

