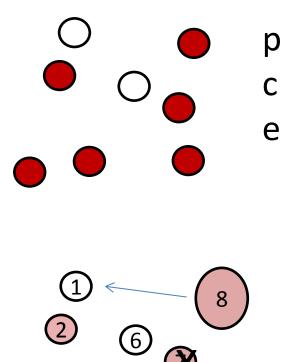
BIOL 410 Population and Community Ecology

Incidence function model Stochastic patch occupancy model

Metapopulation and patch occupancy

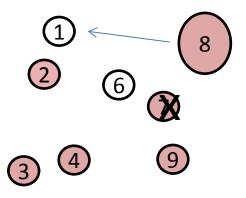

• Levin's classic metapopulation

$$\frac{dp}{dt} = cp(1-p) - ep$$

Patch occupancy model

- State of individual patches

Time	Patch	occupancy
1	6	1
2	7	0
3	8	1


Patch occupancy models

- Why?
 - Develop fundamental theory (distribution, occurrence, extinction, connectivity)
 - Facilitate qualitative/ quantitative predictions for conservation
 - Evaluate the effects of fragmentation and habitat loss
 - Reserve network design
 - Metapopulation viability analysis
 - Study the feasibility of reintroduction

Patch occupancy

• Occupied, not occupied

- Local dynamics and extinction
- Emigration
- Movement
- Immigration
- Colonization

Factors affecting local dynamics and local extinction

- Population size (density)
- Emigration
- Immigration
- Population growth rate
- Species interactions
- Patch
 - Size
 - Quality (food, breeding)

- Stochastic factors
 - Environmental stochasticity
 - Demographic stochasticity
 - Catastrophes
 - Genetics
 - Human influence
- Habitat loss

Factors affecting emigration

- Patch
 - Size
 - Quality
 - Shape
 - Edge quality
- Population density

Factors affecting movement

- The habitat matrix
 - habitat types
 - "texture" of habitat patterns
 - Distance between patches

- Behaviour of the species
 - Habitat specific movement and mortality rates
 - Edge effects
 - Species perceptual ability
 - Dispersal cues
 (conspecific attraction etc.)

Connectivity

Factors affecting immigration

- Patch detection ability of the species
 - Active vs. passive
- Patch
 - Size
 - Shape
 - Boundary quality
 - Quality
- Population size/desntiy

Factors affecting colonization

- Number of immigrants
- Patch quality
- Population density (possible Allee effects etc.)

Marmot

Factors affecting all metapopulation processes

- Species interactions
 - Predation, competition, mutualism etc.
- Regional stochasticity
 - Spatially correlated environmental stochasticity
 - Caused by weather, disease, etc.
 - Caused by correlation in local dynamics / migration
 - Can have strong impact on metapopulation persistence

Glanville fritillary butterfly

1993: 250 populations (occupied patches) 1994: 130 populations Decline due to larval mortality resulting from dry summer

Stocastic Patch Occupancy Models (SPOMs)

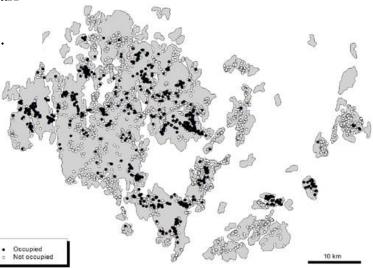
- Basic assumption
 - Local dynamics are very complex to model
 - Ignore local dynamics and only model species presence / absence in habitat patches
 - Kareiva & Steinberg (1997)
 - "the presences / absence assumption is almost necessary in large scale ecological studies"
 - Relatively easy data to collect
 - Original SPOM, Incidence Function Model (IFM)
 - Hanski, 1994

SPOM

Journal of Animal Ecology 1994, **63**, 151-162

A practical model of metapopulation dynamics

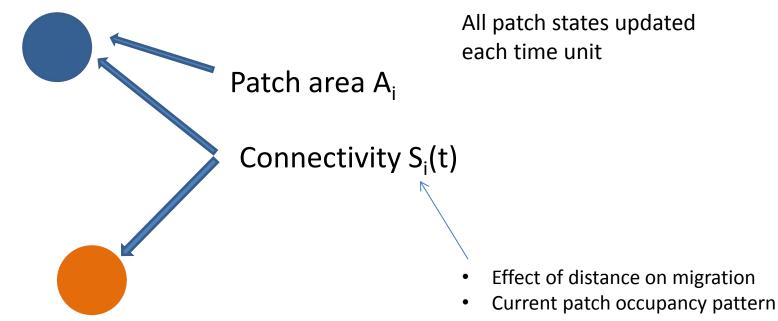
ILKKA HANSKI


Department of Zoology, Division of Ecology, PO Box 17 (P Rautatiekatu 13), SF-00014, University of Helsinki, Finland

The Quantitative Incidence Function Model and Persistence of an Endangered Butterfly Metapopulation

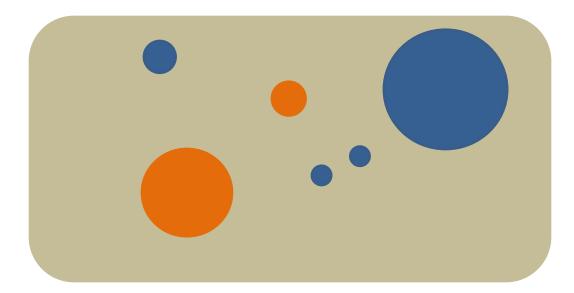
Ilkka Hanski; Atte Moilanen; Timo Pakkala; Mikko Kuussaari

Conservation Biology, Vol. 10, No. 2 (Apr., 1996), 578-590.



Âland islands Finland

SPOM: general structure

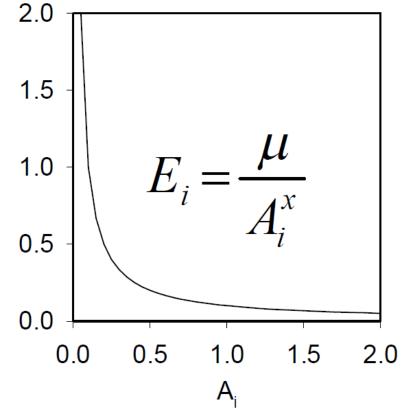

Extinction probability $E_i(t)$ of occupied patch

Colonization probability C_i(t) of empty patch

SPOMs: common simplifications

- Patches have sizes but no shape
- Patch quality is constant
- Habitat matrix is uniform quality
- Regional stochasticity is often ignored

Extinction colonization


Local extinction model: example

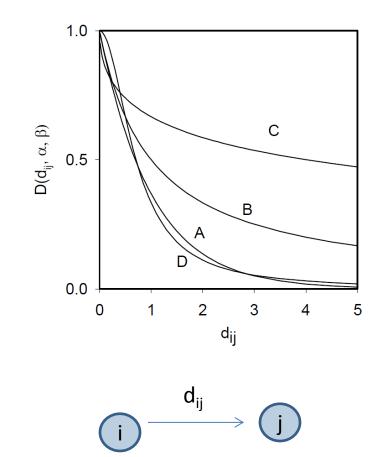
ய்

 Decreasing function of area

- Ai = area of patch I
- μ and x are parameters

 $-\mu$ minimum patch size

Local migration: example


- Migration success decreasing function of distance
- "the dispersal kernel"
- A (negative exponential)

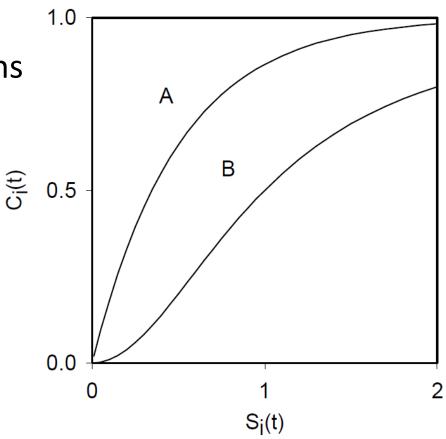
$$D(d_{ij}, \alpha) = \exp(-\alpha d_{ij})$$

• B,C,D (fat tailed)

$$D(d_{ij}, \alpha, \beta) = \frac{1}{1 + \alpha d_{ij}^{\beta}}$$

• d_{ij} = distance from i to j

SPOM: colonization

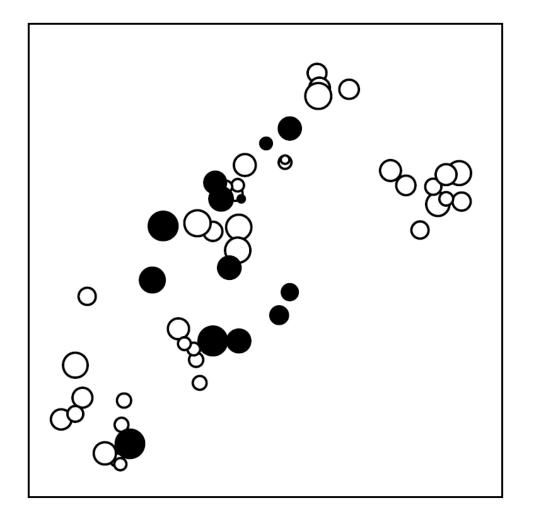

- Colonization probability of patch i, C_i(t)=f(connectivity)
- A: independent colonizations

 $C_i(t) = 1 - \exp(-yS_i(t))$

• B: Alee effects

$$C_{i}(t) = \frac{[S_{i}(t)]^{2}}{[S_{i}(t)]^{2} + y^{2}}$$

- S_i(t) = connectivity
- y = parameter

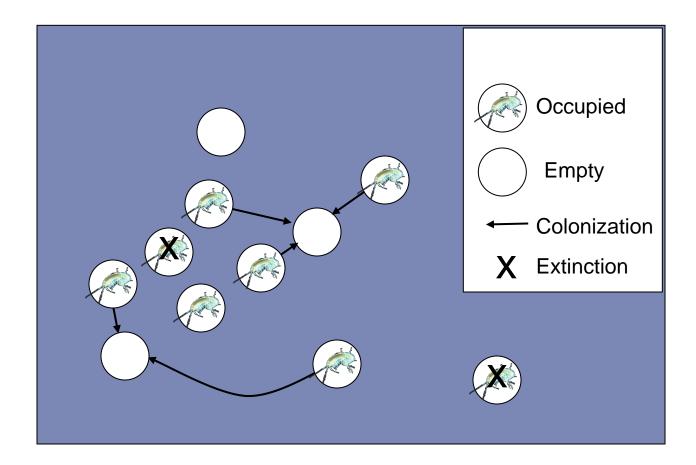

SPOMs: regional stochasticity

- Spatial correlation in extinctions and/or colonizations (weather etc.)
- Approaches
 - Synchronous variation in patch areas
 - Bad year A_i decreases, good year A_i increases
 - Modelling alternatives
 - Synchronous over the entire metapopulation
 - Synchronous within patch clusters, different between clusters
 - Synchronous for different habitat patch classes
 - Enormous effect on predicted metapopulation extinction probabilities

Connectivity in metapopulations

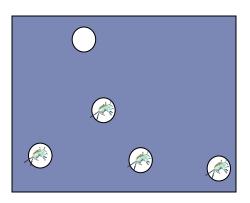
- Connectivity is a critical component of all spatial models
- Many different connectivity measures used in literature
- Most connectivity measures can be classified as
 - Nearest neighbor measures
 - Buffer measures
 - IFM measures
 - Result in large differences in projections and model behaviour

Patch occupancy models



How to characterize connectivity

Comparing connectivity measures


- NN considered poor (base on past performance)
- Best performance of buffer and IFM measures approximately equal
 - Buffer measures sensitive to estimation of buffer radius
 - Inclusion of focal patch size always improves results

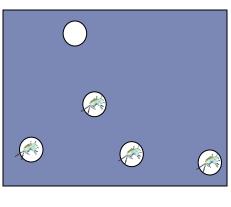
Stochastic Patch Occupancy Model

Incidence function model

time t

$$\begin{array}{c|c|c} X_{1}(t) & 0 \\ X_{2}(t) & 1 \\ X_{3}(t) & 1 \\ X_{4}(t) & 1 \\ X_{5}(t) & 1 \end{array}$$

• Hanski 1994, 1996


- Fist-order linear Markov chain
- The stationary probability of patch i being occupied is given by:

$$J_i = \frac{C_i}{C_i + E_i}$$
$$C_i(t) = \frac{[S_i(t)]^2}{[S_i(t)]^2 + y^2}$$

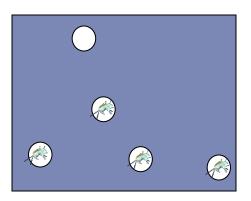
$$E_i = \frac{\mu}{A_i^x}$$

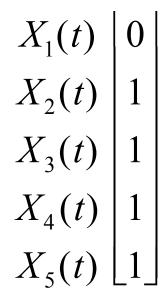
Incidence function model

time t

$$\begin{array}{c|c|c} X_{1}(t) & 0 \\ X_{2}(t) & 1 \\ X_{3}(t) & 1 \\ X_{4}(t) & 1 \\ X_{5}(t) & 1 \end{array}$$

- Hanski 1994, 1996
- Fist-order linear Markov chain
- The stationary probability of patch i being occupied is given by:

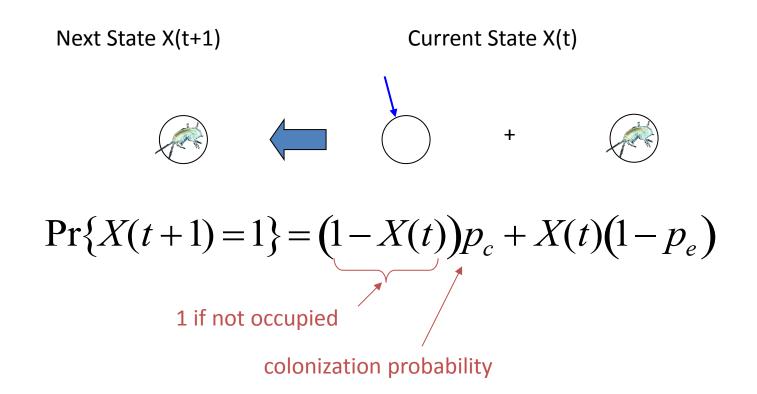

$$J_i = \frac{C_i}{C_i + E_i}$$

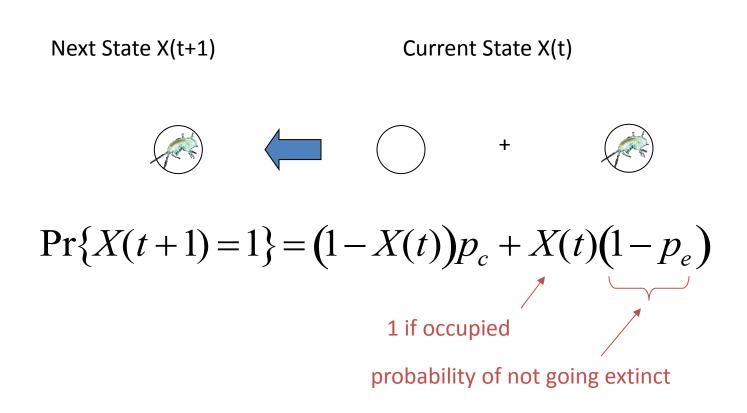

$$C_{i}(t) = \frac{[S_{i}(t)]^{2}}{[S_{i}(t)]^{2} + y^{2}}$$

$$E_i = \frac{\mu}{A_i^x}$$

Incidence function model

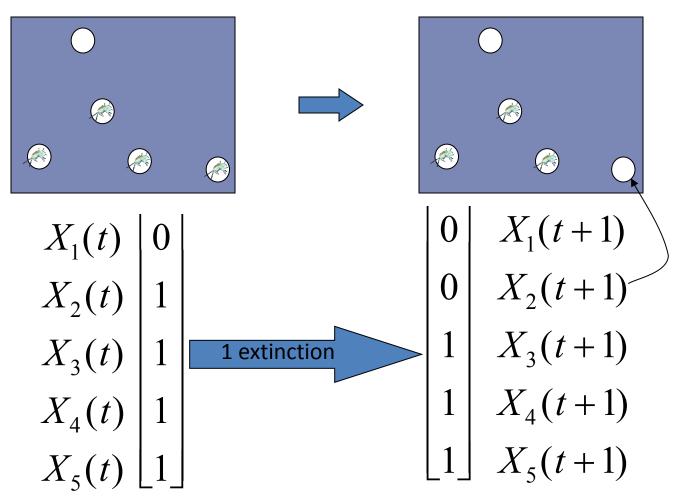
time t




 $C_{i}(t) = \frac{[S_{i}(t)]^{2}}{[S_{i}(t)]^{2} + v^{2}} \qquad E_{i} = \frac{\mu}{A_{i}^{x}}$ $J_i = \frac{c_i}{C_i + E_i}$

- IFM
 - Estimate parameters using maximum likelihood regression (or other)
- Then?
 - Numerically iterate population dynamics
 - Transient dynamics, steady state
 - Importance of patch structure?
 - Importance of individual patches?
 - Likelihood of metapopulation survival

Markov process: conlonization since last observation


Markov process: extinction since last observation

State changes through time

time t

time t+1

