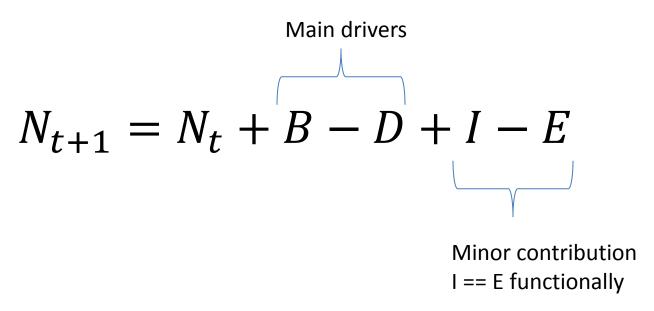
BIOL 410 Population and Community Ecology

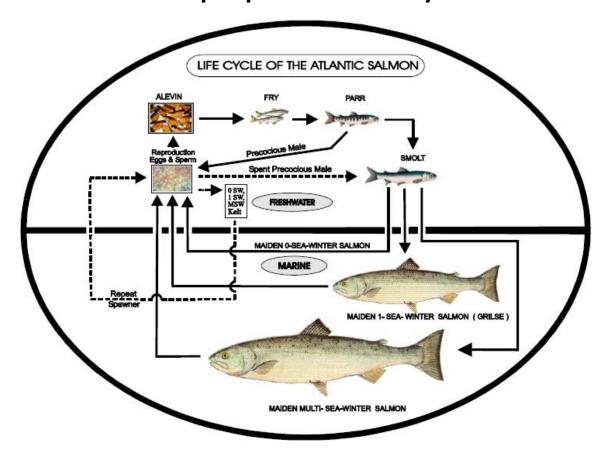

Movement, migration, dispersal

Movement?

$$N_{t+1} = N_t + B - D + I - E$$

What does movement influence? (population, community perspective)

Many population studies


- Metapopulation models
- Source-sink models
- Island biogeography

Why do organisms move?

- Why move from a good spot?
 - Crowding at spot
 - Degradation of spot
 - Environmental degradation of spot
- Movement is risky
 - Mortality during movement
 - Not finding a better spot
- Evolution of dispersal (movement)
 - Chance of occupying a site more favorable than the one you are currently in
 - Dispersal as ESS (kin competition)

Migration and movement patterns

What needs to be known to adequately represent the population dynamics?

Migration vs. dispersal

Migration

- Movement of large numbers of a species from one place to another, usually leaving no individuals behind
 - E.g. bird migration, locust swarms

Dispersal

- Spreading of individuals away from others, often parents or siblings, which remain in the original area
 - E.g. dispersal of plant seeds, movement of mammals away from their social group.
- Both movements away from unfavorable location to a potentially more favorable location

Migration and movement patterns

1. Multiple returns

- 1. Diurnal migration
- 2. Seasonal migration
- 3. Annual migration

2. One return only

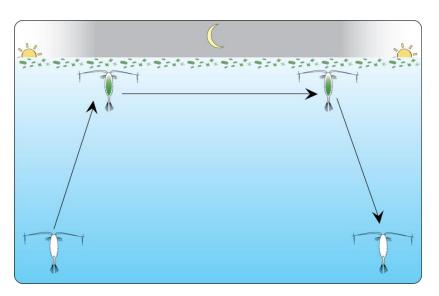
- 1. Breeding sites (semelparous)
- 2. Larval and adult habitat

3. One way only

1. Multigenerational migration

Migration: Diurnal

- Diel vertical migration in zooplankton
 - Predator avoidance
 - Metabolic advantages
 - Dispersal and transport
 - Avoid UV damage


Functional Ecology 1989, 3, 21-27

ESSAY REVIEW

The adaptive significance of diel vertical migration of zooplankton

W. LAMPERT

Department of Physiological Ecology, Max Planck Institute of Limnology, Postfach 165, 2330 Plön, Federal Republic of Germany downwards. The movement reflects only the net effect. The the mean depths of a populatio equals the distance travelled by

Epipelagic

Mesopelagic

Migration: Diurnal

- Bat foraging
 - Roost: cover, predator avoidance
 - Migrate to foraging grounds
- Importance for population biology?

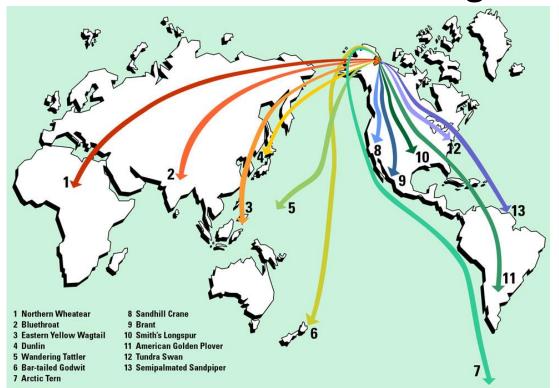
Annual migration

Birds

Breeding	Fall migration, stopover	Wintering	Spring migration, stopover	Breeding			
Salmonids							
Spawning	Downstream migration	Ocean feeding, growth	Return migration	Spawning			
Butterflies							
Breeding	Fall migration	Wintering	Spring migration	Breeding			
Marine mammals							
Calving		Ocean feeding, migratio	Calving				
African ungul							
"dry season"		"season"	"dr ₎	"dry season"			
Calving	Northward migration	Feeding	Southward migration	Calving			
Sea turtles							
Nesting	Ocean feeding, growth		Return migration	Nesting			
Time (scales differ across taxa)							

Migration: seasonal, annual

Alpine animals moving from low to high elevation foraging site between winter and summer e.g. mule deer, elk



Rocky Mountain goat

- Some populations move between summer winter feeding grounds
- Short distance
- Large difference in weather and forage

Migration: seasonal, annual

Bird migration

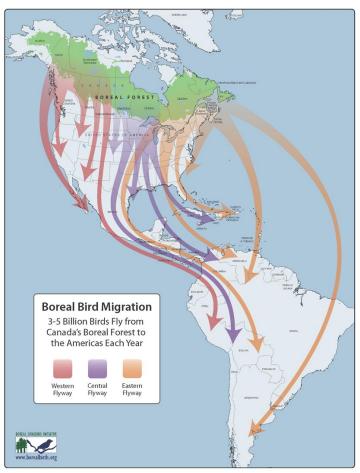
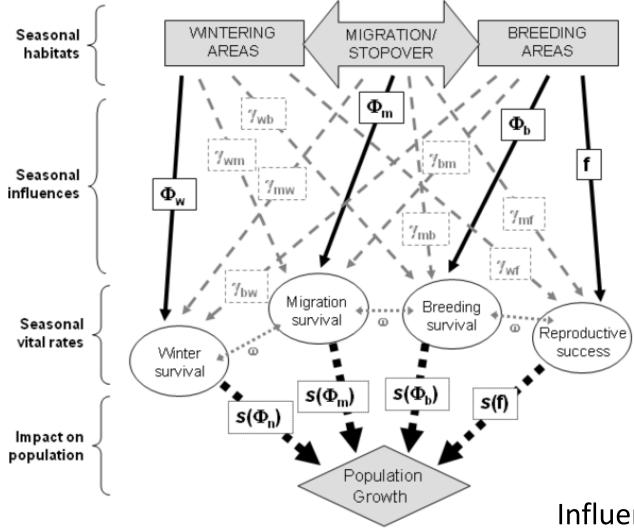


Table 1. Estimates of x (proportion of body mass used for fuel consumption, see Box 1) for different species of migratory birds and a marine migrant (the eel, Anguilla anguilla).

Species	<i>m</i> ₀ (kg)	Distance (km)	<i>X</i> (% <i>m</i> h ⁻¹)	Source
Blackpoll warbler <i>Dendroica</i> striata	0.011	1300	0.56	[36]
Thrush nightingale ^a Luscinia Iuscinia	0.025	-	1.0	[37]
Bar-tailed godwit <i>Limosa</i> lapponica	0.166	11 000	0.42	[6]
Greater knot Calidris tenuirostris	0.143	5 400	0.52	[38]
Red knot <i>Calidis canutus</i>	0.126	4 800	0.77	[32]
Ruddy turnstone Arenaria interpres	0.115	3 700	0.48	[8]
Ruby-throated hummingbird Archilochus colubris	0.0044	1 100	2	[3]
Eel Anguilla anguilla	0.734	5 500	0.0053	[34]

Bar-tailed godwit

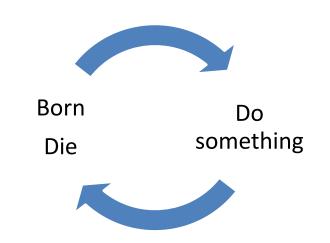
 Non-stop flight from Alaska to New Zealand


doi:10.1371/journal.pbio.1000362.t001


Hedenström A (2010) Extreme Endurance Migration: What Is the Limit to Non-Stop Flight?. PLoS Biol 8(5): e1000362. doi:10.1371/journal.pbio.1000362

http://127.0.0.1:8081/plosbiology/article?id=info:doi/10.1371/journal.pbio.1000362

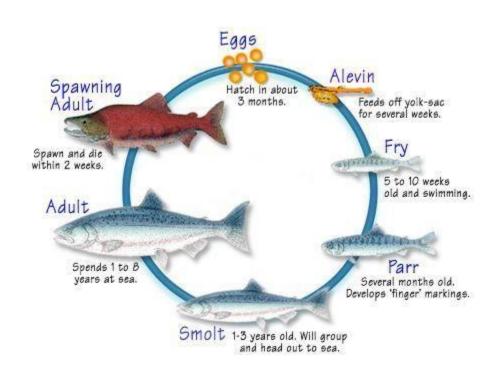
^abased on wind tunnel study.



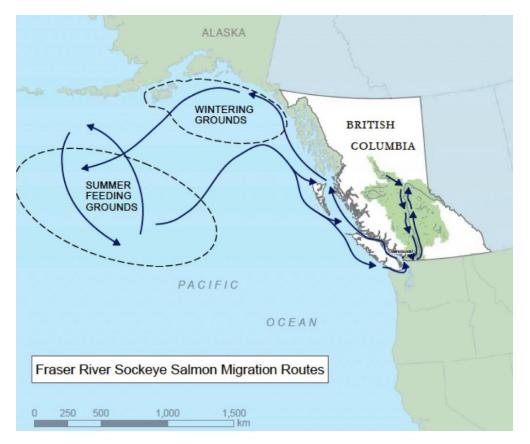
Direct influence Cross-season influence Correlated environments Parameter sensitivities Influence of seasonal migration and seasonal events on population growth

Migration: one return only

- Salmon
- Eels
- Butterflies

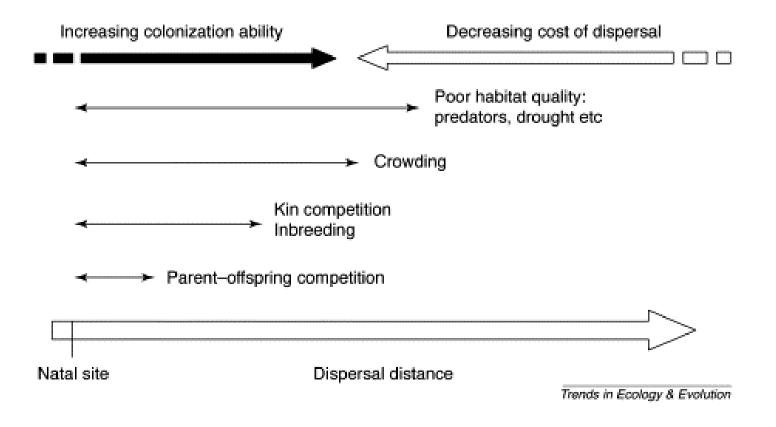


- Migration often synchronized during year
- May be multiyear cycle
- May include multiple cohorts


Migration: one return only

Sockeye Salmon

Migration: one return only


Duration of time spent in each habitat (stage)

Dispersal

- Movement away from breeding site
 - Natal dispersal
 - Movement of individuals from their site of birth to their breeding site
 - Breeding dispersal
 - Movement from one breeding site to another
- Three stages (leaving, travelling, settling)

Dispersal

Means of escape (competition (kin), environmental conditions)

(Ferriere et al. 2000)

Stage dependent?

Sex dependent?

Genetic dependent?

 Phenotype dependent (dispersal polymorphism)

- Stage dependent
 - Egg, seed
 - Juvenile
 - Adult
 - Investment
 - Costs
 - Competition

- Disperser size and number
 - Mortality during dispersal
 - Energetic cost
 - Competitive ability following dispersal

- Sex dependent
 - In birds, females are predominantly the dispersing sex
 - In mammals, males are more likely to disperse
 - Dispersal may be more costly for female mammals.
 - Contrast with birds?

- Genetic dependent
 - Propensity to disperse genetically dependent

Phenotype dependent (dispersal polymorphism)

Is dispersal passive or active

- Passive dispersal
 - Dispersal distance random (somewhat)
 - Habitat selection minimum

- Active dispersal
 - Influence dispersal distance
 - Habitat selection
 - Best of "n"
 - State or experience dependent

When dispersal occurs

Density independent?

- Density dependent?
 - Resource dependent?
 - Competition dependent?