

3.2 Calculations

Procedure:

- 1. After all the columns have been filled out with the appropriate information (what you can fill in without calculating), copy the data and the headings and paste them into a new worksheet called "Processing"
- 2. In **Calculated Height** input the equation:
 - a. =ROUND((**Distance***TAN(RADIANS(**Angle**))+**elev**(**m**),1), where **elev** is *your* height above sea level
 - b. This will give you the height of the bird calculated from your angle and estimated distance (Fig.1)

- c. If the angle is negative, which will occur when the bird is below the height of your location, the equation will need to be changed manually to:
 - i. =ROUND((Elev (m)-(Distance*TAN(RADIANS(Angle*-1)))),1)
 - ii. You can find the negative values by going into the Data tab in excel and clicking the Funnel shaped filter icon (Fig.2)

Figure 2. Microsoft Excel Filter icon

- 1. This will show drop down menus on all the column headings
- 2. Click on the one for **Angle** and select "Number Filters" and then "Less Than..." and type in 0 (Fig. 3)

UNBC UNIVERSITY OF NORTHERN BRITISH COLUMBIA

38		39	40)	41	42	
Dist (m)	•	Angle (°)	Height C (m)	alc 🔻	Height (m)	Angle to A (top) in %	Angl (grnd
	<u>S</u> ort S <u>o</u> rt Sor <u>t</u> <u>C</u> lea F <u>i</u> lte	t Smallest to L t Largest to Sr t by Color ar Filter From er by Color	argest nallest "Height Calc (i	• m)"			
	Nun	Import Filters Import (Select All) Import 45,993191 Import 35,404922 Import 19,682593 Import 14,46311 Import 14,46311 Import 14,46311 Import 14,46311 Import 14,45246 Import 10,96038- Import 7,468007 Import 7,468007 Import 7,468007 Import 7,4640519 Import 6,6019444 Import 6,6019444 Import 6,6019444	812 339 739 171 17 475 797 943 321 Cano	el	Equals Does Not Greater TI Greater TI Less Than Between. Top 10 Above Av Below Av	Equal han han <u>O</u> r Equal To Or E <u>q</u> ual To erage erage	

Figure 3. Excel Sort and Filter functions

3. If you are calculating height in meters above ground:

- d. Add a new Column reading "Height above ground (m)"
- e. Go back to your spatial map of the area that was divided into pie slices reading how high each section was above or below sea level
- f. Using bearing and distance observations, locate the pie slice in which the bird was flying over
- g. In Excel, in "Height above ground (m)" enter the equation:
 - iii. =((Calculated Height of Bird (m)) (Pie Section Height above sea level (m)))
- h. Replace the Height (m) with Height (m) above ground in all equations
- 4. **Delta X** and **Delta Y** refer to the UTM Northings and Eastings of each point in the flight path the bird *from the observer's location*
 - a. GIS uses these to place the bird on the map
 - b. These values are calculated using the following equations:
 - iv. X=ROUND((UTME+Distance*SIN(RADIANS(Bearing))),1)
 - v. Y=ROUND((UTMN+Distance*COS(RADIANS(Bearing))),1)
- 5. Finally, rename all the headings so that they are eight characters or less using only letters (eg: For Target bearing use something like "TRGTBRNG" not "targ_brng"
- 6. Copy the GIS headers into a new worksheet
- 7. Copy your observations and paste just the values into the new worksheet with the GIS headers (Copy>Paste Special>Paste Values)
- 8. Copy the entire worksheet into a new document and save it in .csv format in the correct directory to be imported into GIS.